Overpopulation has spawned so many dystopian futures in science fiction that it would be a lengthy though interesting exercise to collect them all. Among novels, my preference for John Brunner’s Stand on Zanzibar goes back to my utter absorption in its world when first published in book form in 1968. Kornbluth’s “The Marching Morons” (1951) fits in here, and so does J.G. Ballard’s Billenium (1969), and of course Harry Harrison’s Make Room! Make Room! from 1966, which emerged in much changed form in the film Soylent Green in 1973.

You might want to check Science Fiction and Other Suspect Ruminations for a detailed list, and for that matter on much else in the realm of vintage science fiction as perceived by the pseudonymous Joachim Boaz (be careful, you might spend more time in this site than you had planned). In any case, so strongly has the idea of a clogged, choking Earth been fixed in the popular imagination that I still see references to going off-planet as a way of relieving population pressure and saving humanity.

So let’s qualify the idea quickly, because it has a bearing on the search for technosignatures. After all, a civilization that just keeps getting bigger has to take desperate measures to generate the power needed to sustain itself. It’s worth noting, then, that a 2022 UN report suggests a world population peaking at a little over 10 billion and then beginning to decline as the century ends. A study in the highly regarded medical journal The Lancet from a few years back sees us peaking at a little under 10 billion by 2064 with a decline to less than 9 billion by the end of the 2100s.

Image: The April, 1951 issue of Galaxy Science Fiction where “The Marching Morons” first appeared. Brilliant and, according to friend and collaborator Frederick Pohl, exceedingly odd, Cyril Kornbluth died of a heart attack in 1958 at the age of 34, on the way to being interviewed for a job as editor of Fantasy and Science Fiction.

How accurate such projections are is unknown, as is what happens beyond the end of this century, but it seems clear that we can’t assume the kind of exponential increase in population that will put an end to us in Malthurian fashion any time soon. It’s conceivable that one reason we are not finding Dyson spheres (although there are some candidates out there, as we’ve discussed here previously) is that technological civilizations put the brakes on their own growth and sustain levels of energy consumption that would not readily be apparent from telescopes light years away.

Thus a new paper from Ravi Kopparapu (NASA GSFC), in which the population figure of 8 billion (which is about where we are now) is allowed to grow to 30 billion under conditions in which the standard of living is high globally. Assuming the use of solar power, the authors discover that this civilization, far larger in population than ours, uses much less energy that the sunlight incident upon the planet provides. Here is an outcome that puts many one of the most cherished tropes of science fiction to the test, for as Kopparapu explains:

“The implication is that civilizations may not feel compelled to expand all over the galaxy because they may achieve sustainable population and energy-usage levels even if they choose a very high standard of living. They may expand within their own stellar system, or even within nearby star systems, but galaxy-spanning civilizations may not exist.”

Image: Conceptual image of an exoplanet with an advanced extraterrestrial civilization. Structures on the right are orbiting solar panel arrays that harvest light from the parent star and convert it into electricity that is then beamed to the surface via microwaves. The exoplanet on the left illustrates other potential technosignatures: city lights (glowing circular structures) on the night side and multi-colored clouds on the day side that represent various forms of pollution, such as nitrogen dioxide gas from burning fossil fuels or chlorofluorocarbons used in refrigeration. Credit: NASA/Jay Freidlander.

The harvesting of the energies of stellar light may be obsolete among civilizations older than our own, given alternative ways of generating power. But if not, the paper models a telescope on the order of the proposed Habitable Worlds Observatory to explore how readily it might detect a massive array of solar panels on a planet some 30 light years away. This is intriguing stuff, because it turns out that even huge populations don’t demand enough power to cover their planet in solar panels. Indeed, it would take several hundred hours of observing time to detect at high reliability a land coverage of 23 percent on an Earth-like planet using silicon-based solar panels for its needs.

The conclusion is striking. From the paper:

Kardashev (1964) even imagined a Type II civilization as one that utilizes the entirety of its host star’s output; however, such speculations are based primarily on the assumption of a fixed growth rate in world energy use. But such vast energy reserves would be unnecessary even under cases of substantial population growth, especially if fusion and other renewable sources are available to supplement solar energy.

A long-held assumption thus comes under fire:

The concept of a Type I or Type II civilization then becomes an exercise in imagining the possible uses that a civilization would have for such vast energy reserves. Even activities such as large-scale physics experiments and (relativistic) interstellar space travel (see Lingam & Loeb 2021, Chapter 10) might not be enough to explain the need for a civilization to harness a significant fraction of its entire planetary or stellar output. In contrast, if human civilization can meet its own energy demands with only a modest deployment of solar panels, then this expectation might also suggest that concepts like Dyson spheres would be rendered unnecessary in other technospheres.

Of course, good science fiction is all about questioning assumptions by pushing them to their logical conclusions, and ideas like this should continue to be fertile ground for writers. Does a civilization necessarily have to expand to absorb the maximum amount of energy its surroundings make available? Or is it more likely to evolve only insofar as it needs to reach the energy level required for its own optimum level of existence?

So. What makes for an ‘optimum experience of life’? And how can we assume other civilizations will necessarily answer the question the same way we would?

The question explores issues of ecological sustainability and asks us to look more deeply at how and why life expands, relating this to the question of how a technosphere would or would not grow once it had reached a desired level. We’re crossing disciplinary boundaries in ways that make some theorists uncomfortable, and rightly so because the answers are anything but apparent. We’re probing issues that are ancient, philosophical and central to the human experience. Plato would be at home with this.

The paper is Kopparapu et al., “Detectability of Solar Panels as a Technosignature,” Astrophysical Journal Vol. 967, No. 2 (24 May 2024), 119 (full text). Thanks to my friend Antonio Tavani for the pointer to this paper.