I’ve reminisced before about crossing Lake George in the Adirondacks in a small boat late one night some years back, when I saw the Milky with the greatest clarity I had ever experienced. Talk about dark skies! That view was not only breathtaking on its own, but it also raised the point about what we can see where. Ponder the cosmic optical background (COB), which sums up everything that has produced light over the history of the universe. The sum of light can be observed with even a small telescope, but the problem is to screen out local sources. No telescope is better placed to do just this than the Long Range Reconnaissance Imager (LORRI) aboard the New Horizons spacecraft.

Deep in the Kuiper Belt almost 60 AU from the Sun, the craft has a one-way light time of over eight hours (Voyager 1, by comparison, shows a one-way light time of almost 23 hours at 165 AU). It’s heartening that we’re continuing to keep the Voyagers alive even as the options slowly diminish, but New Horizons is still robust and returning data from numerous instruments. No telescope anywhere sees skies as dark as LORRI. That makes measurements of the COB as authoritative as anything we’re likely to get soon.

Image: Not my view from the Adirondacks but close. The Milky Way is gorgeous when unobscured by city lights. Credit: Derek Rowley.

The issue of background light came to the fore in 2021, when scientists at the National Science Foundation-funded NSF NOIRLab put data from New Horizons’ 20.8 cm telescope to work. That effort involved measuring the light found in a small group of images drawn from deep in the cosmos. It suggested a universe that was brighter than it should be, as if there were uncounted sources of light. Now we have further analysis of observations made with LORRI in 2023 supplemented by data from ESA’s Planck mission, which aids in calibrating the dust density in the chosen fields of view. We learn that contamination from the Milky Way can explain the anomaly.

The new paper from lead author Marc Postman (Space Telescope Science Institute) studies light from 16 different fields carefully chosen to minimize the background light of our own galaxy which, of course, surrounds us and compromises our view. This new work, rather than using archival data made for other purposes, explicitly uses LORRI to create images minimizing foreground light sources. The conclusion is evidently air-tight, as laid out by Postman:

At the outset of this work we posed the question: Is the COB intensity as expected from our census of faint galaxies, or does the Universe contain additional sources of light not yet recognized? With our present result, it appears that these diverse approaches are converging to a common answer. Galaxies are the greatly dominant and perhaps even complete source of the COB. There does remain some room for interesting qualifications and adjustments to this picture, but in broad outline it is the simplest explanation for what we see.

And let me throw in this bit from the conclusion of the paper because it adds an interesting dimension to the study:

If our present COB intensity is correct, however, it means that galaxy counts, VHE γ-ray extinction, and direct optical band measurements of the COB intensity have finally converged at an interesting level of precision. There is still room to adjust the galaxy counts slightly, or to allow for nondominant anomalous intensity sources.

In other words, to fully analyze the COB, the scientists have included VHE (very high energy) gamma ray extinction, meaning adjustments for the scattering of gamma rays as they travel to us. Although not visible at optical wavelengths, gamma rays can interact with the photons of the COB in ways that can be measured, as an adjustment to the rest of the COB data. That analysis complements the count of known galaxies and the optical band measurements to produce the conclusion now achieved.

I always find it interesting that there is both a deep satisfaction in solving a mystery and also a slight letdown, for let’s face it, odd things in the universe are fascinating, and let our imaginations run wild. In this case, however, the issue seems resolved.

I don’t have to mention to this audience how much good science continues to get done by having a fully functioning probe this deep in the Kuiper Belt. From New Horizons’ vantage point, there is little to no effect from zodiacal light, which is the result of sunlight scattering off interplanetary dust. The latter is a key factor in the brightness of the sky in the inner Solar System and has made previous attempts to measure the COB from the inner system challenging. We now look ahead to New Horizons’ search for other Kuiper Belt Objects to explore and try to learn whether there is a second belt of debris beyond the known one, and thus between it and the inner Oort Cloud.

We’ll doubtless continue to find things that challenge our assumptions as we press on, a reminder that a successor to New Horizons and the Voyagers is still a matter of debate both in terms of mission design and funding. As to the cosmic optical background, we give up the unlikely but highly interesting prospect that any significant levels of light come from sources unknown to us. As the paper concludes: “…the simplest hypothesis appears to provide the best explanation of what we see: the COB is the light from all the galaxies within our horizon..”

The paper is Postman et al., “New Synoptic Observations of the Cosmic Optical background with New Horizons,” The Astrophysical Journal Vol. 972, No. 1 (28 August 2024), 95 (full text). The 2021 paper is Lauer et al., “New Horizons Observations of the Cosmic Optical Background,” The Astrophysical Journal Vol. 906, No. 2 (11 January 2021), 77 (full text).