What We Know Now about TRAPPIST-1 (and what we don’t)

Our recent conversations about the likelihood of life elsewhere in the universe emphasize how early in the search we are. Consider recent work on TRAPPIST-1, which draws on JWST data to tell us more about the nature of the seven planets there. On the surface, this seven-planet system around a nearby M-dwarf all but shouts for attention, given that we have three planets in the habitable zone, all of them of terrestrial size, as indeed are all the planets in the system. Moreover, as an ultracool dwarf star, the primary is both tiny and bright in the infrared, just the thing for an instrument like the James Webb Space Telescope to harvest solid data on planetary atmospheres. This is a system, in other words, ripe for atmospheric and perhaps astrobiological investigation, and Michaël Gillon (University of Liége), the key player in discovering its complexities, points in a new paper to how much we’ve already learned. If its star is ultracool, the planetary system at TRAPPIST-1 can also be...

read more

White Holes: Tunnels in the Sky?

It's good now and then to let the imagination soar. Don Wilkins has been poking into the work of Carlo Rovelli at the Perimeter Institute, where the physicist and writer explores unusual ideas, though perhaps none so exotic as white holes. Do they exist, and are there ways to envision a future technology that can exploit them? A frequent contributor to Centauri Dreams, Don is an adjunct instructor of electronics at Washington University, St. Louis, where he continues to track research that may one day prove relevant to interstellar exploration. A white hole offers the prospect of even a human journey to another star, but turning these hypothesized objects into reality remains an exercise in mathematics, although as the essay explains, there are those exploring the possibilities even now. by Don Wilkins Among the many concepts for human interstellar travel, one of the more provocative is an offspring of Einstein's theories, the bright twin of the black hole, the white hole. The...

read more

Alone in the Cosmos?

We live in a world that is increasingly at ease with the concept of intelligent extraterrestrial life. The evidence for this is all around us, but I’ll cite what Louis Friedman says in his new book Alone But Not Lonely: Exploring for Extraterrestrial Life (University of Arizona Press, 2023). When it polled in the United States on the question in 2020, CBS News found that fully two-thirds of the citizenry believe not only that life exists on other planets, but that it is intelligent. That this number is surging is shown by the fact that in polling 10 years ago, the result was below 50 percent. Friedman travels enough that I’ll take him at his word that this sentiment is shared globally, although the poll was US-only. I’ll also agree that there is a certain optimism that influences this belief. In my experience, people want a universe filled with civilizations. They do not want to contemplate the loneliness of a cosmos where there is no one else to talk to, much less one where valuable...

read more

Open Cluster SETI

Globular clusters, those vast ‘cities of stars’ that orbit our galaxy, get a certain amount of traction in SETI circles because of their age, dating back as they do to the earliest days of the Milky Way. But as Henry Cordova explains below, they’re a less promising target in many ways than the younger, looser open clusters which are often home to star formation. Because it turns out that there are a number of open clusters that likewise show considerable age. A Centauri Dreams regular, Henry is a retired map maker and geographer now living in southeastern Florida and an active amateur astronomer. Here he surveys the landscape and points to reasons why older open clusters are possible homes to life and technologies. Yet they’ve received relatively short shrift in the literature exploring SETI possibilities. Is it time for a new look at open clusters? by Henry Cordova If you're looking for signs of extra-terrestrial intelligence in the cosmos, whether it be radio signals or optical...

read more

Alien Life or Chemistry? A New Approach

Working in the field has its limitations, as Alex Tolley reminds us in the essay that follows, but at least biologists have historically been on the same planet with their specimens. Today’s hottest news would be the discovery of life on another world, as we saw in the brief flurries over the Viking results in 1976 or the Martian meteorite ALH84001. We rely, of course, on remote testing and will increasingly count on computer routines that can make the fine distinctions needed to choose between biotic and abiotic reactions. A new technique recently put forward by Robert Hazen and James Cleaves holds great promise. Alex gives it a thorough examination including running tests of his own to point to the validity of the approach. One day using such methods on Mars or an ice giant moon may confirm that abiogenesis is not restricted to Earth, a finding that would have huge ramifications not just for our science but also our philosophy. by Alex Tolley Perseverance rover on Mars - composite...

read more

Data Return from Proxima Centauri b

The challenges involved in sending gram-class probes to Proxima Centauri could not be more stark. They’re implicit in Kevin Parkin’s analysis of the Breakthrough Starshot system model, which ran in Acta Astronautica in 2018 (citation below). The project settled on twenty percent of the speed of light as a goal, one that would reach Proxima Centauri b well within the lifetime of researchers working on the project. The probe mass is 3.6 grams, with a 200 nanometer-thick sail some 4.1 meters in diameter. The paper we’ve been looking at from Marshall Eubanks (along with a number of familiar names from the Initiative for Interstellar Studies including Andreas Hein, his colleague Adam Hibberd, and Robert Kennedy) accepts the notion that these probes should be sent in great numbers, and not only to exploit the benefits of redundancy to manage losses along the way. A “swarm” approach in this case means a string of probes launched one after the other, using the proposed laser array in the...

read more

Reaching Proxima b: The Beauty of the Swarm

NIAC’s award of a Phase I grant to study a ‘swarm’ mission to Proxima Centauri naturally ties to Breakthrough Starshot, which continues its interstellar labors, though largely out of the public eye. The award adds a further research channel for Breakthrough’s ideas, and a helpful one at that, for the NASA Innovative Advanced Concepts program supports early stage technologies through three levels of funding, so there is a path for taking these swarm ideas further. An initial paper on swarm strategies was indeed funded by Breakthrough and developed through Space Initiatives and the UK-based Initiative for Interstellar Studies. Centauri Dreams readers are by now familiar with my enthusiasm for swarm concepts, and not just for interstellar purposes. Indeed, as we develop the technologies to send tiny spacecraft in their thousands to remote targets, we’ll be testing the idea out first through computer simulation but then through missions within our own Solar System. Marshall Eubanks, the...

read more

Galactic ‘Nature Preserves’ over Deep Time

Speculating about the diffusion of intelligent species through the galaxy, as we've been doing these past few posts, is always jarring. I go back to the concept of ‘deep time,’ which is forced on us when we confront years in their billions. I can’t speak for anyone else, but for me thinking on this level is closer to mathematics than philosophy. I can accept a number like 13.4 × 10⁹ years (the estimate for the age of globular cluster NGC 6397 and a pointer to the Milky Way’s age) without truly comprehending how vast it is. As biological beings, a century pushes us to the limit. What exactly is an aeon? NGC 6397 and other globular clusters are relevant because these ancient stellar metropolises are the oldest large-scale populations in the Milky Way. But I’m reminded that even talking about the Milky Way can peg me as insufferably parochial. David Kipping takes me entirely out of this comparatively ‘short-term’ mindset by pushing the limits of chronological speculation into a future...

read more

Can the ‘Zoo Hypothesis’ Be Saved?

If we were to find life other than Earth’s somewhere else in the Solar System, the aftershock would be substantial. After all, a so-called ‘second genesis’ would confirm the common assumption that life forms often, and in environments that range widely. The implications for exoplanets are obvious, as would be the conclusion that the Milky Way contains billions of living worlds. The caveat, of course, is that we would have to be able to rule out the transfer of life between planets, which could make Mars, say, controversial. But find living organisms on Titan and the case is definitively made. Ian Crawford and Dirk Schulze-Makuch point out in their new paper on the Fermi question and the ‘zoo hypothesis’ that this issue of abiogenesis could be settled relatively soon as our planetary probes gain in sophistication. We could settle it within decades if we found definitive biosignatures in an exoplanet atmosphere, but here my skepticism kicks in. My...

read more

Life Elsewhere? Relaxing the Copernican Principle

Most people I know are enthusiastic about the idea that other intelligent races exist in the galaxy. Contact is assumed to be an inevitable and probably profoundly good thing, with the exchange of knowledge possibly leading to serious advances in our own culture. This can lead to a weighting of the discourse in favor of our not being alone. The ever popular Copernican principle swings in: We can’t be unique, can we? And thus every search that comes up empty is seen as an incentive to try still other searches. I’m going to leave the METI controversy out of this, as it’s not my intent to question how we should handle actual contact with ETI. I want to step back further from the question. What should we do if we find no trace of extraterrestrials after not just decades but centuries? I have no particular favorite in this race. To me, a universe teeming with life is fascinating, but a universe in which we are alone is equally provocative. Louis Friedman’s new book Alone But Not Lonely...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives