We’ve been talking about the Colossus project, and the possibility that this huge (though remarkably lightweight) instrument could detect the waste heat of extraterrestrial civilizations. But what are the chances of this, if we work out the numbers based on the calculations the Colossus team is working with? After all, Frank Drake put together his famous equation as a way of making back-of-the-envelope estimates of SETI’s chances for success, working the numbers even though most of them at that time had to be no more than guesses.

Bear in mind as we talk about this that we’d like to arrive at a figure for the survival of a civilization, a useful calculation because we have no idea whether technology-driven cultures survive or destroy themselves. Civilizations may live forever, or they may die out relatively quickly, perhaps on a scale of thousands of years. Here Colossus can give us useful information.

The intention, as discussed in a paper by Jeff Kuhn and Svetlana Berdyugina that we looked at yesterday (citation below), is to look out about 60 light years, a sphere within which we have numerous bright stars that a large instrument like Colossus can investigate for such detections. We’re making the assumption, by looking for waste heat, that civilizations living around such stars could be detected whether or not they intend to communicate.

Screenshot from 2017-05-17 08-41-14

Image: Figure 1 from Kuhn & Berdyugina, “Global Warming as a Detectable Thermodynamic Marker of Earth-like Extrasolar Civilizations: The case for a Telescope like Colossus.” Caption: Man-made visible light on the Earth in 2011. From DMPS/NASA. The brightest pixels in this 0.5 × 0.5 degree resolution map have a radiance of about 0.05 × 10?6 W/cm2/sr/micron. Credit: Jeff Kuhn/Svetlana Berdyugina.

Let’s take the fraction of stars with planets as 0.5, and the fraction of those with planets in the habitable zone as 0.5, numbers that have the benefit of Kepler data as some justification, unlike Drake’s pre-exoplanet era calculations. Kuhn and Berdyugina have to make some Drake-like guesses as they run their own exercise, so let’s get really imaginative: Let’s put the fraction of those planets that develop civilizations at the same 0.5, and the fraction of those that are more advanced than our own likewise at 0.5. These numbers operate under the assumption that our own civilization is not inherently special but just one of many.

Work all this out and we can come up with a figure for the fraction of civilizations that might be out there. But how many of them have survived their technological infancy?

Let me cut straight to the paper on the outcome of the kind of survey contemplated for Colossus, which is designed to include “a quantifiably complete neighborhood cosmic survey for [Kardashev] Type I civilizations” within about 20 light years of the Sun, but one that extends out to 60 light years. In the section below, ? stands for the ratio of power production by an extraterrestrial civilization to the amount of stellar power it receives (more on this in a moment).

From the paper:

…current planet statistics suggest that out of 650 stars within 20 pc at least one quarter would have HZEs [Habitable Zone Earths]. Assuming that one quarter of those will develop ? ? 0.01 civilizations, we arrive at the number of detectable civilizations in the Solar neighbourhood ND = 40fs, where fs is the fraction of survived civilizations (i.e., civilizations that form and survive). Hence, even if only one in 20 advanced civilizations survive (including us at the time of survey), we should get a detection. Taking into account the thermodynamic nature of our biomarker, this detection is largely independent of the sociology of detectable ETCs.

Independent because we are not relying on any intent to communicate with us, and are looking for civilizations that may in fact be advanced not far beyond our own level, as well as their more advanced counterparts, should they exist.

Suppose we detect not a single extraterrestrial civilization. Within the parameters of the original assumptions, we could conclude that if a civilization does reach a certain level of technology, its probability of survival is low. That would be a null result of some consequence, because it would place the survival of our own civilization in context. We would, in other words, face old questions anew: What can we do to prevent catastrophe as a result of technology? We might also consider that our assumptions may have been too optimistic — perhaps the fraction of habitable zone planets developing civilizations is well below 0.5.

But back to that interesting figure ?. The discussion depends upon the idea that the marker of civilization using energy is infrared heat radiation. Take Earth’s current global power production to be some 15 terawatts. It turns out that this figure is some 0.04 percent of the total solar power Earth receives. In this Astronomy article from 2013, Kuhn and Berdyugina, along with Colossus backers David Halliday and Caisey Harlingten, point out that in Roman times, the figure for ? was about 1/1000th of what it is today. Again, ? stands for the ratio of power production by a civilization to the amount of solar power it receives.

The authors see global planetary warming as setting a limit on the power a civilization can consume, because both sunlight from the parent star as well as a civilization’s own power production determine the global temperature. To produce maximum energy, a civilization would surely want to absorb the power of all the sunlight available, increasing ? toward 1. Now we have a culture that is producing more and more waste heat radiation on its own world. And we could use an instrument like Colossus to locate civilizations that are on this course.

In fact, we can do better than that, because within the 60 light year parameters being discussed, we can study the heat from such civilizations as the home planet rotates in and out of view of the Earth. Kuhn and Berdyugina liken the method to studying changes of brightness on a star. In this case, we are looking at time-varying brightness signals that can identify sources of heat on the planet, perhaps clustered into the extraterrestrial analog of cities. A large enough infrared telescope could observe civilizations that use as little as 1 percent of the total solar power they intercept by combining visible and infrared observations. A low value of ? indeed.

Screenshot from 2017-05-17 08-41-55

Image: Figure 3 from the Kuhn/Berdyugina paper “Global Warming as a Detectable Thermodynamic Marker of Earth-like Extrasolar Civilizations: The case for a Telescope like Colossus.” Caption: Fig. 3. Expanded view of a representative North American region illustrating temperature perturbation due to cities (left, heated cities are seen in red) and corresponding surface albedo (right). From NEO/NASA.

You can see what a challenge this kind of observation presents. It demands, if the telescope is on the ground, adaptive optics that can cancel out atmospheric distortion. It also demands coronagraph technology that can distinguish the glow of a working civilization from a star that could be many millions of times brighter. And because we are after the highest possible resolution, we need the largest possible collecting area. The contrast sensitivity at visible and infrared wavelengths of the instrument are likewise crucial factors.

I’ll refer you to “New strategies for an extremely large telescope dedicated to extremely high contrast: The Colossus Project” (citation below) for the ways in which the Colossus team hopes to address all these issues. But I want to back out to the larger view: As a civilization, we are now capable of building technologies that can identify extraterrestrial cultures at work, and indeed, instruments like Colossus could be working for us within a decade if we fund them.

We can add such capabilities to the detection of non-technological life as well, through the search for biomarkers that such large instruments can enable. More on that tomorrow, when I’ll wrap up this set on Colossus with a look at photosynthesis signatures on exoplanets. Because for all we know, life itself may be common to habitable zone planets, while technological civilization could be a rarity in the galaxy. Learning about our place in the universe is all about finding the answers to questions like these, answers now beginning to come into range.

The Colossus description paper is Kuhn et al., “Looking Beyond 30m-class Telescopes: The Colossus Project,” SPIE Astronomical Telescopes and Instrumentation (2014). Full text. The paper on Colossus and waste heat is Kuhn & Berdyugina, “Global warming as a detectable thermodynamic marker of Earth-like extrasolar civilizations: the case for a telescope like Colossus,” International Journal of Astrobiology 14 (3): 401-410 (2015). Full text.

tzf_img_post