While we often think about so-called Dysonian SETI, which looks for signatures of technology in our astronomical data, as a search for Dyson spheres, the parameter space it defines is getting to be quite wide. A technosignature has to be both observable as well as unique, to distinguish it from natural phenomena. Scientists working this aspect of SETI have considered not just waste heat (a number of searches for distinctive infrared signatures of Dyson spheres have been run), but also artificial illumination, technological features on planetary surfaces, artifacts not associated with a planet, stellar pollution and megastructures.

Thus the classic Dyson sphere, a star enclosed by a swarm or even shell of technologies to take maximum advantage of its output, is only one option for SETI research. As Ravi Kopparapu (NASA GSFC) and colleagues point out in an upcoming paper, we can also cross interestingly from biosignature searches to technosignatures by looking at planetary atmospheres.

Biosignature science is the more developed of the two fields, though we’re seeing a lot of activity in technosignature work, the robust nature of which can be seen in the extensive references the Kopparapu team identifies. As applied to atmospheres, a search for technosignatures can involve looking for various forms of pollution that flag industrial activity.

To my knowledge, most work on atmospheric pollution has targeted chlorofluorocarbons (CFCs), a useful choice because there is no biological source here, although our own use of CFCs occurred in a fairly brief window and for a specific purpose (refrigeration). The NASA work targets the much more ubiquitous nitrogen dioxide (NO2), which can be a by-product of an industrial process and in general is produced by any form of combustion.

As Kopparapu notes:

“In the lower atmosphere (about 10 to 15 kilometers or around 6.2 to 9.3 miles), NO2 from human activities dominate compared to non-human sources. Therefore, observing NO2 on a habitable planet could potentially indicate the presence of an industrialized civilization.”

Adds Giada Arney, a co-author on the paper and a colleague of Kopparapu at GSFC:

“On Earth, about 76 percent of NO2 emissions are due to industrial activity. If we observe NO2 on another planet, we will have to run models to estimate the maximum possible NO2 emissions one could have just from non-industrial sources. If we observe more NO2 than our models suggest is plausible from non-industrial sources, then the rest of the NO2 might be attributed to industrial activity. Yet there is always a possibility of a false positive in the search for life beyond Earth, and future work will be needed to ensure confidence in distinguishing true positives from false positives.”

Image: Artist’s illustration of a technologically advanced exoplanet. The colors are exaggerated to show the industrial pollution, which otherwise is not visible. Credit: NASA/Jay Freidlander.

This is evidently the first time NO2 has been examined in technosignature terms. The scientists deploy a cloud-free 1-dimensional photochemical model that uses the atmospheric temperature profile of today’s Earth to examine possible mixing ratio profiles of nitrogen oxide compounds on a planet orbiting several stellar types, one of them being a G-class star like the Sun, the others being a K6V and two M-dwarfs, one of these being Proxima Centauri. The authors then calculate the observability of these NO2 features, considering observing platforms like the James Webb Space Telescope and the projected Large UV/Optical/IR Surveyor (LUVOIR) instrument.

Usefully, atmospheric NO2 strongly absorbs some wavelengths of visible light, and the authors’ calculations show that an Earth-like planet orbiting a star like the Sun could be studied from as far as 30 light years away and an NO2 signature detected even with a civilization producing the pollutant at roughly the same levels we do today. This would involve observing at visible wavelengths over the course of at least 400 hours, which parallels what the Hubble instrument needed to produce its well-known Deep Field observations.

But adding yet more interest to K-class stars, whose fortunes as future targets for bio- and technosignature observations seem to be rising, is the fact that stars cooler than the Sun should generate a stronger NO2 signal. These stars produce less ultraviolet light that can break down NO2. As to M-dwarfs, we have this:

Further work is needed to explore the detectability of NO2 on Earth-like planets around M-dwarfs in direct imaging observations in the near-IR with ground-based 30 m class telescopes. NO2 concentrations increase on planets around cooler stars due to reduced availability of short-wavelength photons that can photolyze NO2 . Non-detectability at longer observation times could place upper limits on the amount [of] NO2 present on M-dwarf HZ planets like Prox Cen b.

Where work will proceed is in the model used to make these calculations, which will need to be more complex, as the paper acknowledges:

…when we prescribe water-ice and liquid water clouds, there is a moderate decrease in the SNR of the geometric albedo spectrum from LUVOIR-15 m, with present Earth-level NO2 concentration on an Earth-like planet around a Sun-like star at 10 pc. Clouds and aerosols can reduce the detectability and could mimic the NO2 feature, posing a challenge to the unique identification of this signature. This highlights the need for performing these calculations with a 3-D climate model which can simulate variability of the cloud cover and atmospheric dynamics self-consistently.

The authors consider biosignatures and technosignatures to be “two sides of the same coin,” a nod to the fact that we should be able to search for each at the same time with the next generation of observatories. Finding the common ground between biosignature research and SETI seems overdue, for a positive result for either would demonstrate life’s emergence elsewhere in the universe, and that remains question number one.

The paper is Kopparapu et al., “Nitrogen Dioxide Pollution as a Signature of Extraterrestrial Technology,” accepted at the Astrophysical Journal. (Preprint).

tzf_img_post