In Part 2 of Andrew Higgins’ discussion of laser-thermal rocketry and fast missions to Mars, we look more deeply at the design and consider its potential for other high delta-V missions. Are we looking at a concept that could help us build the needed infrastructure to one day support expansion beyond the Solar System?

by Andrew Higgins

We now turn to the detailed design our team at McGill University came up with for a laser-thermal mission capable of reaching Mars in 45 days. Our team took the transit time and payload requirement (1 ton) from a NASA announcement of opportunity that appeared in 2018 that was seeking “Revolutionary Propulsion for Rapid Deep Space Transit”. Although being in Canada made us ineligible to apply to this program, we adopted this mission targeted by the NASA announcement for our design study; being in Canada also means we are used to working without funding.

Image: McGill University students responsible for the design of the laser-thermal mission to Mars.

The NASA-defined payload of 1 ton would be a technology demonstration mission (what we call Mission Mars 1 in our study). Placing a premium on minimizing the transit time presumably reflects NASA’s eventual interest in lessening astronaut exposure to galactic cosmic rays, which increases sharply once a spacecraft leaves the Earth’s protective magnetosphere. Once on the surface of Mars, data from the Curiosity rover have shown that the radiation environment there appears to be more benign, comparable to or even less than the radiation exposure encountered on the ISS. Throwing regolith to cover the habitat on Mars would lower the radiation risk further, so astronauts leading a hobbit-like existence on Mars should stay healthy, provided they get there quickly.

Our Mars 1 mission starts with our spacecraft already in medium Earth orbit (MEO), so that it remains in view of the ground-based laser during the entire laser-powered burn, which takes about an hour. Given the ongoing revolution in space access, we did not bother to explore using laser propulsion to get to orbit. Chemical propulsion is well-suited for reaching orbit, so we selected a Falcon 9 to bring our vehicle to MEO and focused on using the laser for the transit to Mars.

Image (click to enlarge): The concept of operations for a rapid transit to Mars mission using laser-thermal propulsion. Note the use of a burn-back maneuver to bring the laser-thermal stage back to medium Earth orbit after sending the payload to Mars.

The laser array on Earth is about 10 m by 10 m, comparable to a volleyball court, and for the 1 ton payload mission, the laser would operate at 100 MW output for an hour, using power taken from the grid or generated via solar and then stored in a battery farm. (It is worth noting that a battery farm capable of providing 100 MW for an hour was built in South Australia in 2017 from scratch in just 60 days, in response to a taunt posted in a tweet [1]. So, powering the laser is not a problem.

When the laser beam arrives at the spacecraft, it is focused into the propellant heating chamber by a large, inflatable reflector—a balloon that is transparent on one half and reflective on the other. Inflatable space structures like this are fairly mature, including a demonstration of an inflatable antenna that flew on the Space Shuttle in 1996; a comprehensive overview of this technology was given by Jamey Jacob at the 6th TVIW in Wichita [2]. Inflatable collectors such as these have shown sufficient optical quality for our purposes. While the laser flux on the inflatable is intense, we found fluorinated polyimide films have sufficiently low absorptivity to avoid overheating.

Image: Inflatable Antenna Experiment deployed from the Space Shuttle Endeavor (STS-77).
Image Source: https://apod.nasa.gov/apod/ap960525.html

The inflatable reflector focuses the laser into the heating chamber, raising the temperature of the hydrogen flowing through the chamber to greater than 10,000 K. Keeping the walls of the chamber cool is the central challenge of the design, but our team found a combination of regenerative cooling (cool hydrogen flowing through the walls), transpiration cooling (injecting hydrogen through porous walls), and seeding the hydrogen (to trap thermal radiation in the propellant, similar to the greenhouse effect) should be sufficient to keep the walls cool. The heat absorbed via regeneration is used to power the turbopumps needed to pump the hydrogen via an expander cycle. The fully ionized hydrogen propellant is then exhausted through a conventional bell nozzle to generate thrust. Based on our own calculations and prior work on laser thermal propulsion and gas-core NTRs from the 1970s, a specific impulse of 3000 s appears feasible.

Image: Details of the propellant heating chamber and associated propellant feed and cooling systems.

The laser propulsion hardware is just dead mass once the spacecraft exceeds the focal length of the laser (which is about 50,000 km), so our team proposed bringing the laser thermal propulsion stage back to Earth via a flip-and-burn-back maneuver while still within range of the laser in cis-Lunar space. Once the propulsion stage is brough back to low or medium Earth orbit, it can be refilled and readied for use again. This would allow a single laser-thermal stage to throw multiple payloads to Mars over the duration of a given launch window.

The 14 km/s Delta-V laser thermal burn sends the spacecraft to Mars on a nearly straight line trajectory: no need for looping ellipses and Venus flybys. Our astrodynamicist optimized the trajectory for a 2020 departure. Even though our design had the launch two months after Perseverance, the vehicle would arrive at Mars three months before the newest Mars rover, overtaking it on the way.

Image: 45-day transfer orbit to Mars via laser thermal propulsion, in comparison to the 7-month journey of the Perseverance rover.

When the spacecraft arrives at Mars, there is no laser to perform a laser-assisted deceleration burn (at least, not yet) and at the high approach velocity, aerocapture appears the best option. At an approach speed of 16 km/s, aerocapture is going to be harsh and is another critical link in the mission design. The heat flux will be intense, but the new Heatshield for Extreme Entry Environment Technology (HEEET) developed by NASA in recent years appears to be rated to withstand even greater heat flux. The vehicle entering the Martian atmosphere would need to use lift pointed down (toward the surface of Mars) to keep the vehicle in a trajectory that skims the atmosphere. This maneuver is a delicate balance between heat load, the g-load, and the lift and ballistic coefficients of the spacecraft, which we first modelled analytically and then backed-up with full three-degree-of-freedom simulations. The g-load limit was set at 8-gees for our study; for the scaled-up design with astronauts, the g-load will be severe and sustained for several minutes, but within the limits of what humans can tolerate. (Relevant to note that, at the recent Interstellar Symposium in Tucson, Esther Dyson reported from her centrifuge training at Star City that, “8-gees going through you was actually a lot of fun” [3]). The aerocapture would be a wild ride, for sure.

Image: Details of model used for aerocapture upon arrival at Mars.

The scaled-up version of our design (Mission Mars 2a) intended for crewed missions used a 40-ton spacecraft derived from the Orion capsule and European Service Module. The greater payload requires a more powerful (4 GW) laser to effectuate the same 45-day transit to Mars, but the laser array occupies the same 10-m footprint on earth.

The other mission we considered was a cargo mission (Mission Mars 2b). Robert Zubrin often makes the point that—even if advanced propulsion capable of high thrust and high specific impulse was available—he would still opt for a 6-month free-return trajectory and use the enhanced propulsion capability to bring more payload. So, the Mars 2b mission uses the performance of laser thermal propulsion to maximize the amount of cargo that could be brought to Mars with a Hohmann-like transfer, and shows that the payload could be increased by a factor of more than 10 over what a Centaur upper stage—with the same mass of propellant—could throw to Mars.

Image: Final design of laser-thermal propulsion spacecraft capable of reaching Mars in 45 days.

While a more thorough vetting of our design is called for and much work remains to be done, one encouraging finding is that the specific power of the laser thermal propulsion design is so good—an “alpha” on the order of 0.001 kg/kW—that even if the mass of the entire propulsion system were to increase by a factor of ten, the increased mass would not significantly affect the overall performance or payload capacity of the design. There is sufficient margin in the concept to accommodate the inevitable upward creep in mass that occurs as the design is refined.

Laser thermal propulsion may be well suited to other high Delta-V missions, such as flybys of interstellar comets, the mission to the solar gravitational focus, and a probe to the hypothetical Planet 9—if it is found. There is no reason the laser-thermal approach cannot be combined with laser electric propulsion or other techniques such as an Oberth maneuver. Perhaps it is best to think of laser thermal propulsion as a dragster that burns a lot of propellant quickly to get you up to speed, but from there, you can invoke laser electric propulsion that is well suited to the diminishing laser flux as the spacecraft exceeds the focal length of the laser. Appendix A in our paper details where we calculate the tradeoff between laser thermal and laser electric propulsion occurs. Hopefully, the laser-thermal concept can contribute to a further appreciation of directed energy as a disruptive technology for high-velocity missions in the solar system and beyond.

The complete details of our study can be found in our published paper: Duplay et al, “Design of a rapid transit to Mars mission using laser-thermal propulsion,” Acta Astronautica Volume 192 (March 2022), pp. 143-156 (abstract / preprint).

A browser-friendly version of the paper is available here: https://ar5iv.org/html/2201.00244

References

1. https://www.popularmechanics.com/science/a31350880/elon-musk-battery-farm/

2. J. D. Jacob, B. Loh, Inflatable technologies for interstellar missions, in: P. Gilster (Ed.), Proceedings of the 6th Tennessee Valley Interstellar Workshop, 2020.

3. https://www.youtube.com/watch?v=nHnUeM8RovE

tzf_img_post