Something interesting is going on in the galaxy NGC 6240, some 400 million light years from the Sun in Ophiuchus. Rather than sporting a single supermassive black hole at its center, this galaxy appears to have two, located about 3000 light years from each other. A merger seems likely, or is it? Centauri Dreams regular Don Wilkins returns to his astronomical passion with a look at why multiple supermassive black holes are puzzling scientists and raising questions that may even involve new physics.

By Don Wilkins

Super massive black holes (SMBH), black holes with a mass exceeding 100,000 solar masses, don’t behave as expected. When these galaxies collide, gas and dust smash into each other forming new stars. Existing stars are too far apart to collide. The two SMBH of the galaxies converge. Intuition foresees the two massive bodies coalescing into a single giant, Figure 1. The Universe, as frequently happens, ignores our intuition.

The relevant force is dynamical friction. [1-4] As a result of it, the SMBH experience a deceleration in the direction of motion. Gas and stars between the two SMBH leach momenta from the black holes. The smaller masses pick up enormous speeds and are hurled away from the SMBH. Over time and as immense masses are thrown away, the SMBH inch closer together.

The effect is similar to the gravitational assist maneuver, the fly-by of a massive object, used to accelerate space probes.

The paradox occurs when the gasses and stars have all been expelled from the volume between the two SMBH, a distance of about 3 lightyears. There is no more mass to siphon off momenta. Modeling indicates the standoff would last longer than the life of the Universe.

According to Dr. Gonzalo Alonso Alvarez, a postdoc at the University of Toronto:

“Previous calculations have found that this process [the merger of SMBH] stalls when the black holes are around 1 parsec away from each other, a situation sometimes referred to as the final parsec problem.”

Figure 1. Super Massive Black Holes Orbit Each Other. Credit: NASA.

Two Laser Interferometer Gravitational-Wave Observatories (LIGO) employ laser interferometry to detect gravitational waves in the 10 to 1 kiloHertz regions. This band is suitable to sense black holes 5 to 100 times more massive than the sun. To detect collisions of SMBH, the detector must sense nanometer distortions in spacetime.

The size of gravity wave detectors is inversely proportional to the wavelength. A gravity wave detector sized to measure the cry of a SMBH collision would be immense. Scientists in The NANOGrav Collaboration have overcome the need for detectors with dimensions of light-years by employing pulsars.

In this approach, the timing of a number of pulsars is very accurately measured. A pulsar timing array used sixty-eight pulsars as timing sources. Gravitational waves, compressing and expanding spacetime in their passage, alter the timing of each pulsar in a small way. Timing changes were collected for fifteen years.

Evidence for gravitational waves with periods of years to decades was found. The data are under evaluation to determine the source of the distortions. One possibility is the collision of SMBH.

There are five possible solutions to the paradox. The first is that the NanoGravity detections are not SMBH collisions. There is no paradox. Two SMBH will not merge within the life of the Universe. Rather boringly, our “maths” are correct. Nothing new to learn. [5-12]

Researchers propose that more realistic, triaxial and rotating galaxy models resolve the paradox in ten billion year or less. [13]

Another solution involves three SMBH. The third member continues to remove momentum from the other SMBH until gravitational attraction pulls its two partners into a single black hole. [14]

Expelled gas and stars may return to the two SMBH. These can continue to siphon off momentum until a collision occurs. [15]

Dark matter could contribute to reducing momenta. In this case, particles of dark matter must be able to interact with each other. [16] From Dr. Alvarez whose team published the dark matter paper:

“What struck us the most when Pulsar Timing Array collaborations announced evidence for a gravitational wave spectrum is that there was room to test new particle physics scenarios, specifically dark matter self-interactions, even within the standard astrophysical explanation of supermassive black hole mergers.”

Figure 2. Image: The distorted appearance of NGC 6240 is a result of a galactic merger that occurred when two galaxies drifted too close to one another. When the two galaxies came together, their central black holes did so, too. There are two supermassive black holes within this jumble, spiraling closer and closer to one another. They are currently only some 3,000 light-years apart, incredibly close given that the galaxy itself spans 300,000 light-years. Image credit: NASA, ESA, the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration, and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University).

For the moment, several theories have been advanced to explain the merger of SHBM. Whether further evaluation of the nano wavelength data reveals SBHM coalescence is the primary question.

References

1. S. Chandrasekhar, Dynamical Friction I. General Considerations: the Coefficient of Dynamical Friction, https://articles.adsabs.harvard.edu/pdf/1943ApJ….97..255C

2. S. Chandrasekhar, The Rate of Escape of Stars from Clusters and the Evidence for the Operation of Dynamical Friction, https://articles.adsabs.harvard.edu/pdf/1943ApJ….97..263C

3. S. Chandrasekhar, Dynamical Friction III. A More Exact Theory of the Rate of Escape of Stars from Clusters, https://articles.adsabs.harvard.edu/pdf/1943ApJ….98…54C

4. John Kormendy and Luis C. Ho, Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies, https://arxiv.org/pdf/1304.7762

5. The NANOGrav Collaboration, Focus on NANOGrav’s 15 yr Data Set and the Gravitational Wave Background, The Astrophysical Journal Letters, Volume 951, Number 1, 29 June 2023, https://iopscience.iop.org/collections/apjl-230623-245-Focus-on-NANOGrav-15-year

6. Gabriella Agazie, et al, The nanograv 15 yr data set: evidence for a gravitational-wave background, The Astrophysical Journal Letters, Volume 951, Number 1, 29 June 2023, https://iopscience.iop.org/article/10.3847/2041-8213/acdac6/meta

7. Gabriella Agazie, et al, The NANOGrav 15 yr Data Set: Observations and Timing of 68 Millisecond Pulsars, The Astrophysical Journal Letters, Volume 951, Number 1, 29 June 2023, https://iopscience.iop.org/article/10.3847/2041-8213/acda9a/meta

8. Gabriella Agazie, et al, The NANOGrav 15 yr Data Set: Detector Characterization and Noise Budget, The Astrophysical Journal Letters, Volume 951, Number 1, 29 June 2023, https://iopscience.iop.org/article/10.3847/2041-8213/acda88/meta

9. Gabriella Agazie, et al, The NANOGrav 15 yr Data Set: Search for Signals from New Physics, The Astrophysical Journal Letters, Volume 951, Number 1, 29 June 2023, https://iopscience.iop.org/article/10.3847/2041-8213/acdc91/meta

10. Gabriella Agazie, et al, 15 yr Data Set: Bayesian Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries, The Astrophysical Journal Letters, Volume 951, Number 1, 29 June 2023. https://iopscience.iop.org/article/10.3847/2041-8213/ace18a/meta

11. Gabriella Agazie, et al, The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background, The Astrophysical Journal Leteters, Volume 951, Number 1, 29 June 2023
https://iopscience.iop.org/article/10.3847/2041-8213/ace18b

12. Gabriella Agazie, et al, The NANOGrav 15 yr Data Set: Search for Anisotropy in the Gravitational-wave Background, The Astrophysical Journal Letters, Volume 951, Number 1, 29 June 2023, https://iopscience.iop.org/article/10.3847/2041-8213/acf4fd/meta

13. Peter Berczik, David Merritt, Rainer Spurzem, Hans-Peter Bischof, Efficient Merger of Binary Supermassive Black Holes in Non-Axisymmetric Galaxies, https://arxiv.org/pdf/astro-ph/0601698

14. Masaki Iwasawa, Yoko Funato and Junichiro Makino, Evolution of Massive Blackhole Triples I — Equal-mass binary-single systems, https://arxiv.org/pdf/astro-ph/0511391

15. Milos Milosavljevic and David Merritt, Long Term Evolution of Massive Black Hole Binaries, https://arxiv.org/pdf/astro-ph/0212459

16. Gonzalo Alonso-Álvarez et al, Self-Interacting Dark Matter Solves the Final Parsec Problem of Supermassive Black Hole Mergers, Physical Review Letters (2024). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.133.021401