Some years back I read a science fiction story in which the planet where the action took place orbited an F-class star. That was sufficiently odd to get my attention, and I began to pay attention to these stars, which represent on the order of 3 percent of all stars in the galaxy. Stars like our G-class Sun weigh in at about 7 percent, while the vast majority of stars are M-dwarfs, still our best chances for life detection because of the advantages they offer to our observing technologies, including deep transits and lower stellar brightness for direct imaging purposes.

F-stars are intriguing despite the fact that they tend to be somewhat larger than the Sun (up to 1.4 times its mass) and also hotter (temperatures in the range of 6200-7200 K). Back in 2014, I looked at the work of Manfred Cuntz (University of Texas at Arlington), who had performed a study examining radiation levels in these stars and the damage that DNA would experience with an F-star in the sky at various stages of stellar evolution. We’re dealing here with a shorter life expectancy than the Sun, usually reckoned in the range of 2-8 billion years on the main sequence depending on mass.

We’re also dealing with a larger habitable zone, a width 1.5 to 4 times greater than in the case of the Sun, again depending on the mass of the star and the climate models used to calculate the HZ. So there are advantages, for in the 2014 work, Cuntz and team found that the outer regions of the HZ experience tolerable levels of UV radiation. Now Cuntz has pushed the F-star work forward with a new paper, working with lead author Shaan Patel, a UTA grad student, and colleague Nevin Weinberg. The new work embarks on a statistical analysis of planet-hosting F-class stars drawn from data in the NASA Exoplanet Archive, which is a resource I don’t link to often enough. Says Cuntz:

“F-type stars are usually considered the high-luminosity end of stars with a serious prospect for allowing an environment for planets favorable for life. However, those stars are often ignored by the scientific community. Although F-type stars have a shorter lifetime than our Sun, they have a wider HZ. In short, F-type stars are not hopeless in the context of astrobiology.”

Image: The habitable zone as visualized around different types of star. Credit: NASA.

206 planetary systems emerge from the investigation, of which 18 offer a planet in the liquid water habitable zone for at least part of its orbit. The authors break these worlds down into categories based on the amount of time each spends in the HZ. It’s worth noting that all the currently known planets in the habitable zone of F stars are Jupiter-class worlds, so what we are thinking about here in terms of astrobiology is habitable moons, about which interesting new work continues to emerge. I also assume we’ll be finding terrestrial-class worlds around these stars with deeper investigation.

The exo-Jupiter 38 Virginis (HD 111998) is noteworthy for spending the entirety of its orbit in the habitable zone, which most of these worlds do not. Now things get intriguing. There are reasons for including planets whose orbital eccentricity allows only partial passage through the HZ, drawing on previous research (citation below) on atmospheric conditions for Earth-class planets in extremely elliptical orbits. That 2002 study found that despite large variations in surface temperature, long-term climate depended on the average stellar flux over the entire orbit, meaning that planets not in but near the HZ may still be potentially habitable, at least for extremophiles.

And we can possibly extend our definition of habitable zone. From the paper:

As part of our study, we also consider cushions for both HZ limits. This approach is informed by previous studies given by Abe et al. (2011) and Wordsworth et al. (2013). The former work deals with climate simulations for “land planets” (i.e., desert worlds with limited surface water), which based on those models have a significantly extended inner HZ limit than planets with abundant surface water (akin to Earth). Moreover, Wordsworth et al. (2013) continued to explore the outer limit of HZs by considering the impact of CO2, including CO2 clouds. They found that in their models the outer HZ is notably extended, commensurate to the Martian orbit in the solar system.

Image: This is Figure 10 from the paper. Caption: Depiction of all 18 systems that spend at least part of their time within their respective HZs. Empty markers in panel (c) represent actual planetary mass values as opposed to minimum mass values, which are represented by filled in markers. Credit: Patel et al.

Consider that the lowest-mass planet currently in a habitable zone in all these systems has an estimated mass 143 times Earth and you’ll agree with the need to probe further into potentially habitable exomoons, about which we know next to nothing. Overall, with projects like the Habitable Worlds Observatory on the table, we should consider F-class stars as targets for deeper study. As lead author Patel says, “In future studies, our work may serve to investigate the existence of Earth-mass planets and also habitable exomoons hosted by exo-Jupiters in F-type systems.”

The paper is Patel et al., “Statistics and Habitability of F-type Star–Planet Systems,” The Astrophysical Journal Supplement Series Vol. 274, No. 1 (12 September 2024), 20 (full text). The paper on habitability in eccentric orbits is Williams & Pollard, “Earth-like worlds on eccentric orbits: excursions beyond the habitable zone,” International Journal of Astrobiology Vol. 1, Issue 1 (January, 2002), 61-68 (abstract).