Citizen SETI

I love watching people who have a passion for science constructing projects in ways that benefit the community. I once dabbled in radio astronomy through the Society of Amateur Radio Astronomers, and I could also point to the SETI League, with 1500 members on all seven continents engaged in one way or another with local SETI projects. And these days most everyone has heard the story of Planet Hunters, the citizen science project that identified the unusual Boyajian’s Star (KIC 8462852). When I heard from Roger Guay and Scott Guerin, who have been making their own theoretical contributions to SETI, I knew I wanted to tell their story here. The post that follows lays out an alien civilization detection simulation and a tool for visualizing how technological cultures might interact, with an entertaining coda about an unusual construct called a ‘Dyson shutter.’ I’m going to let Roger and Scott introduce themselves as they explain how their ideas developed.

by Roger Guay and Scott Guerin

Citizen Science plays an increasingly important role across several scientific disciplines and especially in the fields of astronomy and SETI. Tabby’s star, discovered by members of the Planet Hunters project and the SETI@home project are recent examples of massively parallel citizen-science efforts. Those large-scale projects are counterbalanced by individuals whose near obsession with a subject compels them to study, write, code, draw, design, talk about, or build artifacts that help them understand the ideas that excite them.

Roger Guay and Scott Guerin, working in isolation, recently discovered parallel evolution in their thinking about SETI and the challenges of interstellar detection and communication. Guay has undertaken the programming of a 10,000 x 8,000 light year swath of a typical galaxy and populates it with random radiating communicating civilizations. His model allows users to tweak basic parameters to see how frequently potential detections occur. Guerin is more interested in a galaxy-wide model and has used worksheets and animations to bring his thoughts to light. His ultimate goal is to develop a parametric civilization model so that interactions, if any, can be studied. However, at the core, both efforts were attempts at visualizing the Fermi Paradox across space-time, and both experimenters show how fading electromagnetic halos may be all that’s left for us to discover of an extraterrestrial civilization, if we listen hard enough.

The backgrounds, mindsets, and tool kits available to Roger and Scott play an important role in their path to this blog.

Roger Guay

I am a retired Physicist and Technical Fellow Emeritus from Boeing in Seattle. I can’t remember when I first became interested in being a scientist (it was in grade school) but I do remember when I first became obsessed with the Fermi paradox. It was during a discussion while on a road trip with a colleague. At first, this discussion mainly revolved around the almost unfathomable vastness of space and time in our galaxy, but then turned to parameters of the Drake equation. The one that was the most controversial was L, the lifetime of an Intelligent Civilization or IC.

The casual newcomer to the Drake equation will tend to assume a relatively long lifetime for an IC, but when considering detection methods such as SETI uses, one must adjust L to reflect the lifetime of the technology of the detection method. For example, SETI is listening for electromagnetic transmissions in the microwave to radio and TV range. So, L has to be the estimated lifetime of that technology. For SETI’s technology, we’ll call this the Radio Age. On Earth, the Radio Age started about 100 years ago and has already fallen off due to technological advances such as the internet and satellite communication. So I argued, an L = 150 ± 50 years might be a more reasonable assumption for the Drake equation when considering the detection method of listening for radio signals.

At this point the discussion was quite intense! When I thought about an L equal to a few hundred years in a galaxy that continues to evolve over a 13-billion-year lifespan, the image that came to my mind was that of fireflies in the night. And that was the precursor for my Alien Civilization Detection or ACD simulation.

One can imagine electromagnetic or “radio” bubbles appearing randomly in time and space and growing in size over time. At any instant in time the bubble from an IC will have a radius equal to the speed of light times the amount of time since that IC first began broadcasting. These bubbles will continue to grow at the speed of light. When the IC stops broadcasting for whatever reason, the bubble will become hollow and the shell thickness will reflect the time duration of that IC’s Radio Age lifetime.

If the age of our galaxy is compressed into one year, we on Earth have been “leaking” radio and television signals into space for only a small fraction of a second. And, considering the enormity of space and the fact that our “leakage” radiation has only made it to a few hundred stars out of the two to four hundred billion in our galaxy, one inevitably realizes there must be a significant synchronization problem that arises when ICs attempt to detect one another. So what does this synchronicity problem look like visually?

To answer this question my tasks became clear: dynamically generate and animate radio bubbles randomly in space and time, grow them at the speed of light at very fast accelerated rate in a highly compressed region of the galaxy, fade them over time for inverse square law decay, and then analyze the scene for detection. No Problem!!!

Using LiveCode, a modern derivative of HyperCard on steroids, I began my 5-year project to scientifically simulate this problem. Using the Monte Carlo Method whereby randomly generated rings denoting EM radiation from ICs pop into existence in a 8,000 X 10,000 LY region of the galaxy* centered on our solar system at a rate of about 100 years per second, the firefly analogy came to life. And the key to determining detection potential is to recognize that it can only occur when a radiation bubble is passing over another IC that is actively listening. This is the synchronicity problem that is dramatically apparent when the simulation is run!

To be scientifically accurate and meaningful, some basic assumptions were required:

  • 1. ICs will appear not only randomly in space, but also randomly in time.
  • 2. ICs will inevitably transition into (and probably out of) a Radio/TV age where they too will “leak” electromagnetic radiation into space.
  • 3. The radio bubbles are assumed to be spherically homogeneous**.

To use the ACD simulation, the user chooses and adjusts parameters such as Max Range, Transmit and Listen times*** and N, the Drake equation estimate of the number of ICs in the galaxy at any given instant. During a simulation run, potential detections are tallied and the overall probability of detection is displayed.

About two years ago, as the project continued to evolve, I became aware of Stephan Webb’s encyclopedic book on the Fermi Paradox, If the Universe is Teeming with Aliens … Where is Everybody? This book was most influential in my thinking and the way I shaped the existing version of the ACD simulation.

screenshot-from-2016-12-21-07-57-27

A snapshot of the main screen of the ACD simulation midway through a 10,000 year run.

A Webb review of the ACD simulation is available here: http://stephenwebb.info/category/fermi-paradox/

And you can download it here at this Dropbox link:

https://www.dropbox.com/sh/dlkx24shyfjsoax/AADeFd2wZyZxvLYHU2f4jJ0ha?dl=0

Conclusions? The ACD simulation dramatically demonstrates that there is indeed a synchronicity problem that automatically arises when ICs attempt to detect one another. And for reasonable (based on Earth’s specifications) Drake equation parameter selections, detection potentials are shown to be typically hundreds of years apart. In other words, we can expect to search for a few hundred years before finding another IC in our section of the galaxy. When you consider Occam’s razor, is not this synchronicity problem the most logical resolution to the Fermi Paradox?

Footnotes:

* The thickness of the Milky Way is small compared to its diameter. So for regions close to the center of the thickness, we can approximate with a 2-dimensional model.

** Careful consideration has to be given to this last assumption: Of course, it is not accurate in that the radiation from a typical IC is assumed to be composed of many different sources and have widely varying parameters, as they are on Earth. But the bottom line is that the homogenous distribution gives the best case scenario of detection potential. An example of when to apply this thinking is to consider laser transmission vs radio broadcast. Since a laser would presumably by highly directed and therefore more intense at greater distances, the user of the ACD simulation might choose a Higher Max Range but at the same time realize that pointing problems will make detection potential much smaller than the ACD indicates. The ACD does not take this directly into consideration. Room for the ACD to grow?

*** One of the features of this simulation is that the user can make independent selections of both the transmit and listening times of ICs, whereas the Drake equation lumps them together in the lifetime parameter.

Scott Guerin

I grew up north of Milwaukee, Wisconsin and was the kid in 5th grade who would draw a nuclear reactor on the classroom’s chalkboard. My youthful designs were influenced by Voyage to the Bottom of the Sea, Lost in Space, everything NASA, and 2001: a Space Odyssey. In the mid 70s, I was a technical illustrator at the molecular biology laboratory at UW Madison and, after graduation with a fine arts degree, I went on to a 30-year career as an interpretive designer of permanent exhibits in science and history museums.

I began visually exploring SETI over two years ago in order to answer three questions: First, why is such a thought-provoking subject so often presented only in math and graphs thereby limiting information to experts? Secondly, why is the Fermi Paradox a paradox? Thirdly, what form might an interstellar “we are here” signaling technology take?

Using Sketchup, I built a simple galactic model to see what scenarios matched the current state of affairs: silence and absence. At a scale of 1 meter = 1 light year, I positioned Sol appropriately, and randomly “dropped” representations of civilizations (I refer to them as CivObjects) into the model. Imagine dropping a cup full of old washers, nails, wires, and screws onto a flat, 10″ plate and seeing if any happen to overlap with a grain-of-salt-sized solar system (and that speck is still ~105 too large).

The short answer is that they didn’t overlap and I’ve concluded that the synchronicity issue, combined with weak listening and looking protocols is a strong answer to the paradox. When synchronicity is considered along with sheer rarity of emitting civilizations (my personal stance), the silence makes even more sense.

screenshot-from-2016-12-21-08-00-11

For scale, the green area at lower right represents the Kepler star field if it were a ~6,000 LY diameter sphere. The solid discs represent currently emitting civilizations, the halos represent civilizations that have stopped emissions over time, and the lines and wedges represent directed communications. I sent this diagram to Paul and Marc at Centauri Dreams who were kind enough to pass it on to several leading scientists and they graciously, and quickly, replied with encouragement.

Curtis Charles Mead’s 2013 Harvard dissertation “A Configurable Terasample-per-second Imaging System for Optical SETI,” George Greenstein’s Understanding the Universe, Tarter’s, and the Benford’s papers, among others, were influential in my next steps. I realized the halos were unrealistic representations of a civilization’s electromagnetic emissions and that if you could see them from afar, they could be visualized as prickly, 3-dimensional sea urchin-like artifacts with tight beams of powerful radar, microwave, and laser emanating from a mushy sphere of less directional, weaker electromagnetic radiation.

screenshot-from-2016-12-21-08-02-01

From afar, Earth’s EM halo is a lumpy, flattened sphere some 120LY in radius dating to the first radio experiments in the late 1890’s. The 1974 Arecibo message toward M13 is shown being emitted at the 10 o’clock position.

From Tarter’s 2001 paper “At current levels of sensitivity, targeted microwave searches could detect the equivalent power of strong TV transmitters at a distance of 1 light year (the red sphere at center in the diagram), or the equivalent power of strong military radars to 300 ly, and the strongest signal generated on Earth (Arecibo planetary radar) to 3000 ly, whereas sky surveys are typically two orders of magnitude less sensitive. The sensitivity of current optical searches could detect megajoule pulses focused with a 10-m telescope out to a distance of 200 ly.”

screenshot-from-2016-12-21-08-03-14

In this speculative diagram, two civilizations “converse” across 70 LY. Mead’s paper confirms the aiming accuracy needed to correct for the the proper motion of the stars, given a laser beam just a handful of AU wide at the distance illustrated, is within human grasp. The civilizations shown would most likely have been emitting EM for hundreds of years so that their raw EM halos are so large and diffuse they cannot be shown in the diagram. The magenta blob represents the elemental EM “hum” of a civilization within a couple LY, the green spikes represent tightly beamed microwaves for typical communications and radar , while the yellow spikes are lasers reaching out to probes, being used as light-sail boosters, and fostering long distance high-bandwidth communications. Each civilization has an EM fingerprint, affected by their system’s ecliptic angle and rotation, persistence of ability, and types of technologies deployed — these equate to a unique CivObject.

In advance of achieving the goal of a fully parametric 3D model, I manually animated several kinds of civilizations and their interactions by imagining a CivObject as a variant of a Minkowski space-time cone. I move the cone’s Z axis (time) through a galactic hypersurface to illustrate a civilization’s history of passive and intentional transmission, as well as probes at sub-lightspeed. A CivObject’s anatomy reveals the course of a civilization’s history and I like to think of them as distant cousins of Hari Seldon’s prime radiant. https://vimeo.com/195239607 password: setiwow!

The anatomy of a CivObject allows arbitrary time scales to be visualized as function of xy directionality, EM strength, and type of emission. Below is Earth’s as a reference. Increasing transmission power is suggested by color.

04-2-minkowski-earth-civ-object-121-years

I found it easy to animate transmissions but continue to struggle with visualizing periods of listening and the strength of receivers. Like Guay, I concluded that a potential detection can occur only when a transmission passes through a listening civilization. A “Conversing” model designed to actually simulate communication interactions needs to address both ends of “the line” with a full matrix of transmitter/receiver power ratios as well as sending/listening durations, directions, sensitivities, and intensities. In addition, a more realistic galactic model including 3d star locations, the GHZ, and interstellar extinction/absorption rates is needed.

And now for some sci-fi

A few months before KIC 8462852 was announced and Dyson Swarms became all the rage, I noticed one of those old ventilators on top of a barn roof and thought that if a Kardashev II civilization scaled it up to +-1AU diameter, it would become a solar powered, omni-directional signalling device capable of sending an “Intelligence was here” message across interstellar space. I called it a Dyson Shutter.

Imagine a star surrounded by a number of ribbon-like light sails connected at their poles. Each vane’s stability, movement, and position is controlled by the angle of sail relative to incoming photons from the central star. The shutter would be a high tech, ultra-low bandwidth, scalable construct. I have imagined that each sail, at the equator, would be no less than one Earth diameter wide which is at the lower end of Kepler-grade detection.

Depending on the number constructed, the vanes could be programmed to shift into simple configurations such as fibonacci and prime number sequences.

screenshot-from-2016-12-21-08-06-22

screenshot-from-2016-12-21-08-07-32

I imagine the Dyson Shutter remains in a stable message period for hundreds of rotations. Perhaps there are “services” for the occasional visitor, perhaps it has defenses against comets, incoming asteroids, or inter-galactic graffiti artists. Perhaps it is an intelligent being itself but is it a lure, a trap, a collector, or colleague? Is it possible Tabby’s star is a Dyson Shutter undergoing a multi-year message reconfiguration?

screenshot-from-2016-12-21-08-08-41

The shutter’s poles are imagined to be filled with command and control systems, manufacturing facilities, spaceports, etc.

Wrap

We hope that our work as presented here might inspire some of you to join the ranks of the Citizen Scientist. There are many opportunities and science needs the help. With today’s access to information and digital tools, anyone with a little passion for their ideas and a lot of imagination and persistence can help communicate complex issues to the public and make contributions to science. We hope that our stories resonate with at least some of you. Please let us know what you think and let’s all push back on the frontiers of ignorance!

tzf_img_post

Detection Possibilities for Optical SETI

The Laser SETI campaign we looked at on Friday is one aspect of a search for intelligent life in the universe that is being addressed in many ways. In addition to optical methods, we look of course at radio wavelengths, and as we begin to characterize the atmospheres of rocky exoplanets, we’ll also look for signs of atmospheric modification that could indicate industrial activity. But we have to be careful. Because SETI looks for evidence of alien technology, it is a search for civilizations about whose possible activities we know absolutely nothing.

So we can’t make assumptions that might blind us to a detection. Getting the blinders off also means extending our reach. If successful, the Laser SETI project will do two things we haven’t been able to do before — it will scan the entire sky and, because it is always on, it will catch optical transients we are missing today, and tell us whether any of these are repeating.

In radio terms, think of the famous WOW! signal of 1977, detected at Ohio State University’s Big Ear radio telescope. Seeming to come out of the constellation Sagittarius, it fit our ideas of what an extraterrestrial signal could look like, but we can’t draw any conclusions because we’ve never seen it again. If the signal intrigues you, Robert Gray’s book The Elusive WOW (Palmer Square, 2011) goes into it in great depth, including Gray’s 1987 and 1989 attempts to find it. Gray would search again in the mid 90’s using the Very Large Array, and again in 1999 with the University of Tasmania’s Mount Pleasant Radio Observatory, with null results.

The Elusive WOW is a splendid page-turner that captures the drama of the hunt. It also reminds us how frustrating a transient can be — here today, gone in moments, never seen again. Did the WOW signal reappear at some time that we weren’t pointing our instruments at it? Is it repeating on some schedule we haven’t figured out?

All-sky surveys like Laser SETI weren’t on the mind of Giuseppe Cocconi and Philip Morrison when they wrote their ground-breaking paper “Searching for Interstellar Communications” in Nature (1959), one that is mostly commonly cited as launching SETI. But for optical SETI’s origins, we can look back with equal admiration at R. N. Schwartz and Charles Townes’ “Interstellar and Interplanetary Communication by Optical Masers,” which ran two years later in the same journal. The author’s vision encapsulates the idea:

We propose to examine the possibility of broadcasting an optical beam from a planet associated with a star some few or some tens of light-years away at sufficient power-levels to establish communications with the Earth. There is some chance that such broadcasts from another society approximately as advanced as we are could be adequately detected by present telescopes and spectrographs, and appropriate techniques now available for detection will be discussed. Communication between planets within our own stellar system by beams from optical masers appears a fortiori quite practical.

Image: Charles Hard Townes, at the National Institute of Biomedical Imaging and Bioengineering’s 5th Anniversary Symposium, held in June 2007. Credit: NIBIB.

Optical SETI Scenarios

We saw Friday that a petawatt laser of the kind that has been built at Lawrence Livermore National Laboratory could be transformed into an optical SETI beacon, working in conjunction with a huge mirror like that found on our largest telescopes. Indeed, the Sun can be outshone by a factor of 10,000, a bright and, one would assume, obviously artificial beacon. But the complexities involved in targeting another star — and aiming the beam to lead the moving target, one that will be many light years away, make targeted laser beacons difficult.

Surely the challenges of laser beacons — not to mention their cost — could be overcome by advanced civilizations, although the idea of a less targeted beacon seems to make more sense; i.e., a beacon that sweeps a region of the sky on a recurrent basis, assuming the intent here is simply to announce the presence of the extraterrestrial civilization as widely as possible. But perhaps it’s much more likely that, if we do detect a laser signal from another civilization, it will be in the form of a chance interception of a technology at work.

Image: The power of laser technology even today. Credit: Eliot Gillum/SETI Institute.

Detecting communications within an exoplanetary system presents serious problems of geometry, given that these optical beams would be broadcast to specific targets and are unlikely to be pointing by chance at the Earth. But there is a scenario that could work: We’ve learned all about exoplanet detection through planetary transits from the Kepler mission. A planetary system that was co-planar with our own could produce a communications beam between its own planets that swept past us with each orbital revolution. Even then, the target planet would likely absorb enough of the signal that detection would be unlikely.

But there are other kinds of detections. James Guillochon and Abraham Loeb have looked at the possibility that beaming to interstellar sailcraft would produce leakage that might be observable to our detectors (see SETI via Leakage from Light Sails in Exoplanetary Systems). Both interplanetary as well as interstellar transportation systems leave possible signatures.

And consider Boyajian’s Star (KIC 8462852), whose odd light curves drew it to the attention of citizen scientists at the Planet Hunters project and subsequent worldwide scrutiny. Numerous natural phenomena have been put forward to explain what we are seeing here, but light curves like this could also be the sign of an extraterrestrial civilization working on some kind of massive project (a Dyson sphere inevitably comes to mind, but who knows?)

It made sense, then, to make Boyajian’s Star a SETI target, which is why the SETI Institute used the Allen Telescope Array to search for radio emissions, a two-week survey that produced no evidence of artificial radio signals coming from the system. For more on this investigation, see Jim and Dominic Benford’s Quantifying KIC 8462852 Power Beaming, which analyzed the ATA results at radio wavelengths. But note the following, which summarizes what the Benfords believe would be detectable given the instruments used in the attempt. As you can see, not all detectable signals would come from power beamed, for example, to an interstellar mission. Some of them definitely include applications within the target system:

  • Orbit raising missions, which require lower power, are not detectable at the thresholds of the Allen Array.
  • Launch from a planetary surface into orbits would be bright enough to be seen by the 100 kHz observations. However, the narrow bandwidth 1 Hz survey would not see them.
  • Interplanetary transfers by beam-driven sails should be detectable in their observations, but are not seen. This is for both the narrow 1 Hz and for the “wideband” 100 kHz observations.
  • Starships launched by power beams with beamwidths that we happen to fall within would be detectable, but are not seen.

Image: Power beaming to drive an interstellar lightsail. Credit: Adrian Mann.

But let’s move back into the optical. Nate Tellis (UC-Berkeley) recently worked with astronomer Geoff Marcy to analyze Keck data archives on 5,600 stars observed between 2004 and 2016, using a computer algorithm fine-tuned to detect laser light (see A Search for Laser Emission with Megawatt Thresholds from 5600 FGKM Stars,” preprint here). The search was an excellent way to put thousands of hours of accumulated astronomical data to work — who knows what discoveries may lurk within such datasets? As a part of the effort, the astronomers studied Boyajian’s Star, again finding no detectable signals. Potential candidates that did emerge in the survey all turned out to be the result of natural processes.

But power beaming is a possible observable as any local civilization goes about moving things around in its own system. Leakage from a beamed power infrastructure is something we’ve focused on here frequently (see, for example, Power Beaming Parameters & SETI re KIC 8462852). Power beaming could be what enables a space-based infrastructure, one that would be capable of large-scale engineering and also of producing the kind of power beams that could drive spacecraft at high velocity to other stars.

But we needn’t exclude communications entirely. Jim Benford has pointed out that any civilization using large-scale power beaming would be aware that its activities could be visible to others. If it had the desire to communicate on such a random basis, the ETI civilization could embed a message within the beam. A kind of interstellar message in a bottle, thrown into the cosmic sea with each sweeping power beam that does local work.

All of this should reinforce the key issue that the Laser SETI project addresses — such beams, working within their own planetary system, would appear in our sky as transients. We return to the core issue, the need for an all-sky survey that observes continuously. Making no assumptions about any desire to communicate, such a survey nonetheless is capable of spotting the signs of a working civilization going about its business. It should, I would wager, also pick out new astrophysical phenomena that will add to our knowledge of the galaxy.

tzf_img_post

SETI: Upcoming Talk of Interest

Given the interest the unusual star KIC 8462852 has generated here and elsewhere, I want to be sure those of you in California are aware of an upcoming talk that touches on the matter, as well as broader SETI issues. Titled “The Breakthrough Initiative – Listen and Megastructures at KIC 8463,” the talk will be delivered by Andrew Siemion (UC-Berkeley). The venue is 1065 La Avenida Street, Mountain View, CA 94043. The time: Tuesday, February 23, 2016 from 12:00 PM to 1:00 PM (PST).

More at this web page, from which the description that follows:

Dr. Andrew Siemion, Director of the Berkeley SETI Research Center (BSRC) at the University of California, Berkeley, will present an overview of the Breakthrough Listen Initiative, 100-million-dollar, 10-year search for extraterrestrial intelligence. Dr. Siemion will also discuss other SETI efforts ongoing at the BSRC, including the successful citizen science project SETI@Home, as well as a concerted effort to undertake panchromatic observations of the mysterious Kepler star KIC 8462852.

tzf_img_post

SETI and Open Data

Are there better ways of studying the raw data from SETI? We may know soon, because Jill Tarter has announced that in a few months, the SETI Institute will begin to make this material available via the SETIQuest site. Those conversant with digital signal processing are highly welcome, but so are participants from the general public as the site gears up to offer options for all ages. Tarter speaks of a ‘global army’ of open-source code developers going to work on data collected by the Allen Telescope Array, along with students and citizen scientists anxious to play a role in the quest for extraterrestrial life.

SETI@home has been a wonderful success, but as Tarter notes in this CNN commentary, the software has been limited. You took what was given you and couldn’t affect the search techniques brought to bear on the data. I’m thinking that scattering the data to the winds could lead to some interesting research possibilities. We need the telescope hardware gathered at the Array to produce these data, but the SETI search goes well beyond a collection of dishes.

Ponder that the sensitivity of an instrument is only partly dependent on the collecting area. We can gather all the SETI data we want from our expanding resources at the Allen Telescope Array, but the second part of the equation is how we analyze what we gather. Claudio Maccone has for some years now championed the Karhunen-Loève Transform, developed in 1946, as a way of improving the sensitivity to an artificial signal by a factor of up to a thousand. Using the KL Transform could help SETI researchers find signals that are deliberately spread through a wide range of frequencies and undetectable with earlier methods.

Image: Dishes at the ATA. What new methods can we bring to bear on how the data they produce are analyzed? Credit: Dave Deboer.

SETI researchers used a detection algorithm known as the Fourier Transform in early searches, going under the assumption that a candidate extraterrestrial signal would be narrow-band. By 1965, it became clear that the new Fast Fourier Transform could speed up the analysis and FFT became the detection algorithm of choice. It was in 1982 that French astronomer and SETI advocate François Biraud pointed out that here on Earth, we were rapidly moving from narrow-band to wide-band telecommunications. Spread spectrum methods are more efficient because the information, broken into pieces, is carried on numerous low-powered carrier waves which change frequency and are hard to intercept.

What Biraud noticed, and what Maccone has been arguing for years, is that our current SETI methods using FFT cannot detect a spread spectrum signal. Indeed, despite the burden the KLT’s calculations place even on our best computers, Maccone has devised methods to make it work with existing equipment and argues that it should be programmed into the Low Frequency Array and Square Kilometer Array telescopes now under construction. The KLT, in other words, can dig out weak signals buried in noise that have hitherto been undetectable.

But wait, wouldn’t a signal directed at our planet most likely be narrow in bandwidth? Presumably so, but extraneous signals picked up by chance might not be. It makes sense to widen the radio search to include methods that could detect both kinds of signal, to make the search as broad as possible.

I bring all this up because it points to the need for an open-minded approach to how we process the abundant data that the Allen Telescope Array will be presenting to the world. By making these data available over the Web, the SETI Institute gives the field an enormous boost. We’re certainly not all digital signal analysts, but the more eyes we put on the raw data, the better our chance for developing new strategies. As Tarter notes:

This summer, when we openly publish our software detection code, you can take what you find useful for your own work, and then help us make it better for our SETI search. As I wished, I’d like to get all Earthlings spending a bit of their day looking at data from the Allen Telescope Array to see if they can find patterns that all of the signal detection algorithms may still be missing, and while they are doing that, get them thinking about their place in the cosmos.

And let me just throw in a mind-bending coda to the above story. KLT techniques have already proven useful for spacecraft communications (the Galileo mission employed KLT), but Maccone has shown how they can be used to extract a meaningful signal from a source moving at a substantial percentage of the speed of light. Can we communicate with relativistic spacecraft of the future when we send them on missions to the stars? The answer is in the math, and Maccone explains how it works in Deep Space Flight and Communications (Springer/Praxis, 2009), along with his discussion of using the Sun as a gravitational lens.

tzf_img_post

Alone in the Cosmos?

We live in a world that is increasingly at ease with the concept of intelligent extraterrestrial life. The evidence for this is all around us, but I’ll cite what Louis Friedman says in his new book Alone But Not Lonely: Exploring for Extraterrestrial Life (University of Arizona Press, 2023). When it polled in the United States on the question in 2020, CBS News found that fully two-thirds of the citizenry believe not only that life exists on other planets, but that it is intelligent. That this number is surging is shown by the fact that in polling 10 years ago, the result was below 50 percent.

Friedman travels enough that I’ll take him at his word that this sentiment is shared globally, although the poll was US-only. I’ll also agree that there is a certain optimism that influences this belief. In my experience, people want a universe filled with civilizations. They do not want to contemplate the loneliness of a cosmos where there is no one else to talk to, much less one where valuable lessons about how a society survives cannot be learned because there are no other beings to teach us. Popular culture takes many angles into ETI ranging from alien invasion to benevolent galactic clubs, but on the whole people seem unafraid of learning who aliens actually are.

Image: Louis Friedman, Co-Founder and Executive Director Emeritus, The Planetary Society. Credit: Caltech.

The silence of the universe in terms of intelligent signals is thus disappointing. That’s certainly my sentiment. I wrote my first article on SETI back in the early 1980s for The Review of International Broadcasting, rather confident that by the end of the 20th Century we would have more than one signal to decipher from another civilization. Today, each new report from our active SETI efforts at various wavelengths and in varying modes creates a sense of wonder that a galaxy as vast as ours has yet to reveal a single extraterrestrial.

It’s interesting to see how Friedman approaches the Drake equation, which calculates the number of civilizations that should be out there by setting values on factors like star and planet formation and the fraction of life-bearing planets where life emerges. I won’t go through the equation in detail here, as we’ve done that many times on Centauri Dreams. It’s sufficient to note that when Friedman addresses Drake, he cites the estimates for each factor in the current scientific literature and also gives a column with his own guess as to what each of these items might be.

Image: This is Table 1 from Friedman’s book. Credit: Louis Friedman / University of Arizona Press.

This gets intriguing. Friedman comes up with 1.08 civilizations in the Milky Way – that would be us. But he also makes the point that if we just take the first four terms in the Drake equation and multiply them by the time that Earth life has been in existence, we get on the order of two billion planets that should have extraterrestrial life. Thus a point of view I find consistent with my own evolving idea on the matter: Life is all over the place, but intelligent life is vanishingly rare.

Along the way Friedman dismisses the ‘cosmic zoo’ hypothesis that we looked at recently as being perhaps the only realistic way to support the idea that intelligent life proliferates in the Milky Way. Ian Crawford and Dirk Schulze-Makuch see a lot wrong with the zoo hypothesis as well, but argue that the idea we are being observed but not interacted with is stronger than any other explanation for what David Brin and others have called ‘the Great Silence.’ I’ll direct you to Milan M. Ćirković’s The Great Silence: Science and Philosophy of Fermi’s Paradox for a rich explanation both cultural and scientific of our response to the ‘Where are they?’ question.

Before reading Alone But Not Lonely, my own thinking about extraterrestrial intelligence has increasingly focused on deep time. It’s impossible to run through even a cursory study of Earth’s geological history without realizing how tiny a slice our own species inhabits. The awe induced by these numbers tends to put a chill up the spine. The ‘snowball Earth’ episode seems to have lasted, for example, about 85 million years in its entirety. Even if we break it into two periods (accounting for the most severe conditions and excluding periods of lesser ice penetration), we still get two individual eras of global glaciation, each lasting ten million years.

These are matters that are still in vigorous debate among scientists, of course, so I don’t lean too heavily on the precise numbers. The point is simply to cast something as evidently evanescent as our human culture against the inexorable backdrop of geological time. And to contrast even that with a galaxy that is over 13 billion years old, where processes like these presumably occurred in multitudes of stellar systems. What are the odds that, if intelligence is rare, two civilizations would emerge at the same time and live long enough to become aware of each other? And does the lack of hard evidence for extraterrestrial civilizations not make this point emphatic?

But let me quote Friedman on this:

Let’s return to that huge difference between the time scales associated with the start of life on Earth and its evolution to intelligence. The former number was 3.5 to 3.8 billion years ago, a “mere” 0.75 to 1 billion years after Earth formed. Is that just a happenstance, or is that typical of planets everywhere? I noted earlier that intelligence (including the creation of technology) has only been around for 1/2,000,000 of that time—just the last couple thousand years. Life has been on Earth for about 85 percent of its existence; intelligence has been on Earth for about 0.0005 percent of that time. Optimists might want to argue that intelligence is only at its beginning, and after a million years or so those numbers will drastically change, perhaps with intelligence occupying a greater portion of Earth’s history. But that is a lot of optimism, especially in the absence of any other evidence about intelligence in the universe.

Friedman argues that the very fact we can envision numerous ways for humanity to end – nuclear war, runaway climate effects, deadly pandemics – points to how likely such an outcome is. It’s a good point, for technology may well contain within its nature the seeds of its own destruction. What scientists like Frank Tipler and Michael Hart began pointing out decades ago is that it only takes one civilization to overcome such factors and populate the galaxy, but that means we should be seeing some evidence of this. SETI continues the search as it should and we fine-tune our methods of detecting objects like Dyson spheres, but shouldn’t we be seeing something by now?

The reason for the ‘but not lonely’ clause in Friedman’s title is that ongoing research is making it clear how vast a canvas we have to analyze for life in all its guises. Thus the image below, which I swipe from the book because it’s a NASA image in the public domain. What I find supremely exciting when looking at an actual image of an exoplanet is that this has been taken by our latest telescope, which is itself in a line of technological evolution leading to completely feasible designs that will one day be able to sample the atmospheres of nearby exoplanets to search for biosignatures.

Image: This image shows the exoplanet HIP 65426 b in different bands of infrared light, as seen from the James Webb Space Telescope: purple shows the NIRCam instrument’s view at 3.00 microns, blue shows the NIRCam instrument’s view at 4.44 microns, yellow shows the MIRI instrument’s view at 11.4 microns, and red shows the MIRI instrument’s view at 15.5 microns. These images look different because of the ways that the different Webb instruments capture light. A set of masks within each instrument, called a coronagraph, blocks out the host star’s light so that the planet can be seen. The small white star in each image marks the location of the host star HIP 65426, which has been subtracted using the coronagraphs and image processing. The bar shapes in the NIRCam images are artifacts of the telescope’s optics, not objects in the scene. Credit: NASA, ESA, CSA, Alyssa Pagan (STScI).

Bear in mind the author’s background. He is of course a co-founder (with Carl Sagan and Bruce Murray) of The Planetary Society. At the Jet Propulsion Laboratory in the 1970s, Friedman was not only involved in missions ranging from Voyager to Magellan, but was part of the audacious design of a solar ‘heliogyro’ that was proposed as a solution for reaching Halley’s Comet. That particular sail proved to be what he now calls ‘a bridge too far,’ in that it was enormous (fifteen kilometers in diameter) and well beyond our capabilities in manufacture, packaging and deployment at the time, but the concept led him to a short book on solar sails and has now taken him all the way into the current JPL effort (led by Slava Turyshev) to place a payload at the solar gravitational lens distance from the Sun. Doing this would allow extraordinary magnifications and data return from exoplanets we may or may not one day visit.

Friedman is of the belief that interstellar flight is simply too daunting to be a path forward for human crews, noting instead the power of unmanned payloads, an idea that fits with his current work with Breakthrough Starshot. I won’t go into all the reasons for his pessimism on this – as the book makes clear, he’s well aware of all the concepts that have been floated to make fast interstellar travel possible, but skeptical they can be adapted for humans. Rather than Star Trek, he thinks in terms of robotic exploration. And even there, the idea of a flyby does not satisfy, even if it demonstrates that some kind of interstellar payload can be delivered. What he’s angling for beyond physical payloads is a virtual (VR) model in which AI techniques like tensor holography can be wrapped around data to construct 3D holograms that can be explored immersively even if remotely. Thus the beauty of the SGL mission:

We can get data using Nature’s telescope, the solar gravity lens, to image exoplanets identified from Earth-based and Earth-orbit telescopes as the most promising to harbor life. It also would use modern information technology to create immersive and participatory methods for scientists to explore the data—with the same definition of exploration I used at the beginning of this book: an opportunity for adventure and discovery. The ability to observe multiple interesting exoplanets for long times, with high-resolution imaging and spectroscopy with one hundred billion times magnification, and then immerse oneself in those observations is “real” exploration. VR with real data should allow us to use all our senses to experience the conditions on exoplanets—maybe not instantly, but a lot more quickly than we could ever get to one.

The idea of loneliness being liberating, which Friedman draws from E. O. Wilson, is a statement that a galaxy in which intelligence is rare is also one which is entirely open to our examination, one which in our uniqueness we have an obligation to explore. He lists factors such as interplanetary smallsats and advanced sail technologies as critical for a mission to the solar gravitational lens, not to mention the deconvolution of images that such a mission would require, though he only hints at what I consider the most innovative of the Turyshev team’s proposals, that of creating ‘self-assembling’ payloads through smallsat rendezvous en-route. In any case, all of these are incremental steps forward, each yielding new scientific discoveries from entirely plausible hardware.

Such virtual exploration does not, of course, rule out SETI itself, including the search for other forms of technosignature than radio or optical emissions. Even if intelligence ultimately tends toward machine incarnation, evidence for its existence might well turn up in the work of a mission to the gravitational lens. So I don’t think a SETI optimist will find much to argue with in this book, because its author makes clear how willing he is to continue to learn from the universe even when it challenges his own conceptions.

Or let’s put that another way. Let’s think as Friedman does of a program of exploration that stretches out for centuries, with not one but numerous missions exploring through ever refined technologies the images that the bending of spacetime near the Sun creates. We keep hunting, in other words, for both life and intelligence, for we know that the cosmos seems to have embedded within it the factor of surprise. A statement sometimes attributed to Asimov comes to mind: “The most exciting phrase to hear in science, the one that heralds new discoveries, is not “Eureka!” (I found it!) but “That’s funny…” The history of astronomy is replete with such moments. There will be more.

The book is Friedman, Alone but Not Lonely: Exploring for Extraterrestrial Life, University of Arizona Press, 2023.