I’m interested in a new paper on planet formation, not only for its conclusions but its methodology. What Amy Bonsor (University of Cambridge) and colleagues are drawing from their data is how quickly planets can form. We’ve looked numerous times in these pages at core accretion models that explain the emergence of rocky worlds and gravitational instability models that may offer a way of producing a gas giant. But how long after the formation of the circumstellar disk do these classes of planets actually appear? A planet like the Earth poses fewer challenges than a Jupiter or Saturn. Small particles run into each other within the gas and dust disk surrounding the young star, assembling planets and other debris through a process of clumping that eventually forms planetesimals that themselves interact and collide. Thus core accretion: The planet ‘grows’ in ways that are readily modeled and can be observed in disks around other stars. But the gas giants still pose problems. Core...
Super Earths/Hycean Worlds
Dave Moore is a Centauri Dreams regular who has long pursued an interest in the observation and exploration of deep space. He was born and raised in New Zealand, spent time in Australia, and now runs a small business in Klamath Falls, Oregon. He counts Arthur C. Clarke as a childhood hero, and science fiction as an impetus for his acquiring a degree in biology and chemistry. Dave has kept up an active interest in SETI (see If Loud Aliens Explain Human Earliness, Quiet Aliens Are Also Rare) as well as the exoplanet hunt, and today examines an unusual class of planets that is just now emerging as an active field of study. by Dave Moore Let me draw your attention to a paper with interesting implications for exoplanet habitability. The paper is “Potential long-term habitable conditions on planets with primordial H–He atmospheres,” by Marit Mol Lous, Ravit Helled and Christoph Mordasini. Published in Nature Astronomy, this paper is a follow-on to Madhusudhan et al’s paper on Hycean...
Stapledon’s Hawk
Walking along dark streets this morning, as autumn leaves gusted past under a deepening lunar eclipse, I realized that there was a reason for my recent foray into what I called ‘Stapledon thinking.’ The reason: Landscape by moonlight. What these early walks remind me of is the beginning of Olaf Stapledon’s 1937 novel Star Maker, in which the narrator takes a similar walk in the darkness, musing on his personal relationships as well as his place in the larger structure of the cosmos (I’m using the word ‘structure’ there deliberately, as we’ll see later). The narrator walks to a hill overlooking houses below, somewhere near the sea. There is a lighthouse. He sits down on the heather. And now ‘the hawk-flight of imagination,’ in Stapledon’s lovely phrase, takes over. An astral journey begins: Imagination was now stimulated to a new, strange mode of perception. Looking from star to star, I saw the heaven no longer as a jeweled ceiling and floor, but as depth beyond flashing depth of...
In Person or Proxy to Mars and Beyond?
Larry Klaes is well known in these parts for his extraordinary reviews of classic science fiction films. Today, however, he steps back from cinema to consider how we will expand into space. The crews on our deep space missions will doubtless be a lot different than some of those old black-and-white movies would suggest. Just how will our species adapt to the environments it will soon be exploring? There's nothing quite so lush as our own blue and green planet, yet the imperative to move ever outward is a driver for our species. Mars is a case in point, but the long-range picture is that we're looking off-planet and already pondering destinations beyond the Solar System. Re-shaping our expectations will be a part of what drives the scientists and engineers who equip us for the next steps. An earlier version of this essay was published by The Mars Society. by Larry Klaes In 1972, singer, pianist, and composer Sir Elton Hercules John (born 1947) released a song titled "Rocket Man". This...
A New Trio of ‘Twilight’ Asteroids
I have further thoughts on 'Stapledon thinking,' as discussed in the last post, but my second piece on the topic isn't ready just yet, and in any case I want to give a quick nod to a topic we looked at a few months back, the discovery and analysis of Near Earth Objects that orbit between the Sun and the orbit of Earth. So far we haven't found many of these 'twilight objects,' but the attempts to find them continue. As witness current work with an exceptional instrument. The Dark Energy Camera is a wide-field CCD imager, mounted on a 4-meter telescope at Cerro Tololo (Chile), that was designed for the Dark Energy Survey. The latter mapped hundreds of millions of galaxies to look for insights into the structure of the cosmos. The DES ended in 2019, but DECam continues to produce data that have helped us find fascinating objects like 2015 TG387, a dwarf planet on an extreme orbit that takes it to aphelion at 1000 AU, with a closest solar approach of 65 AU. DECam has also found 12 new...
A Nod to ‘Stapledon Thinking’
Taking a long walk in the early morning hours (and I do mean ‘early,’ as I usually walk around 4 AM – Orion is gorgeously high in the sky this time of year in the northern hemisphere), I found myself musing on terminologies. The case in point: The Fermi Paradox. Using that phrase, the issue becomes starkly framed. If there are other civilizations in the galaxy, why don’t we have evidence for them? Much ink, both physical and digital, has been spilled over the issue, but I will argue that we should soften the term ‘paradox.’ I prefer to call the ‘where are they’ formulation the Fermi Question. I prefer ‘question’ rather than ‘paradox’ because I don’t think we have enough data to declare what we do or do not see about other civilizations a paradox. A paradox is a seemingly self-contradictory statement that demands explanation. But is anything actually demanded here? There are too many imponderables in this case to even frame the contradiction. How can we have a paradox when we are...
Biosignatures: The Case for Nitrous Oxide
Are we overlooking a potential biosignature? A new study makes the case that nitrous oxide could be a valuable indicator of life on other worlds, and one that can be detected with current and future instrumentation. In today’s essay, Don Wilkins takes a close look at the paper. A retired aerospace engineer with thirty-five years experience in designing, developing, testing, manufacturing and deploying avionics, Don tells me he has been an avid supporter of space flight and exploration all the way back to the days of Project Mercury. Based in St. Louis, where he is an adjunct instructor of electronics at Washington University, Don holds twelve patents and is involved with the university’s efforts at increasing participation in science, technology, engineering, and math. by Don Wilkins Biosignatures, specific signals produced by life, are the focus of intense study within the astronomical community. Gases such as nitrogen (N2), oxygen and methane are sought in planetary atmospheres as...
Mapping Black Holes in (and out of) the Milky Way
Some years back, I reminisced in these pages about reading Poul Anderson’s World Without Stars, an intriguing tale first published in 1966 about a starship in intergalactic space that was studying a civilization for whom the word ‘isolation’ must have taken on utterly new meaning. Imagine a star system tens of thousands of light years away from the Milky Way, a place where an entire galaxy is but a rather dim feature in the night sky. Poul Anderson discussed this with Analog editor John Campbell: One point came up which may interest you. Though the galaxy would be a huge object in the sky, covering some 20? of arc, it would not be bright. In fact, I make its luminosity, as far as this planet is concerned, somewhere between 1% and 0.1% of the total sky-glow (stars, zodiacal light, and permanent aurora) on a clear moonless Earth night. Sure, there are a lot of stars there — but they’re an awfully long ways off! For more on galactic brightness, see The Milky Way from a Distance. The...
Ion Propulsion for the Nearby Interstellar Medium
When scientists began seriously looking at beaming concepts for interstellar missions, sails were the primary focus. The obvious advantage was that a large sail need carry no propellant. Here I'm thinking about the early work on laser beaming by Robert Forward, and shortly thereafter George Marx. Forward's first published work on laser sails came during his tenure at Hughes Aircraft Company, having begun as an internal memo within the firm, and later appearing in Missiles and Rockets. Theodore Maiman was working on lasers at Hughes Research Laboratories back then, and the concept of wedding laser beaming with a sail fired Forward's imagination. The rest is history, and we've looked at many of Forward's sail concepts over the years on Centauri Dreams. But notice how beaming weaves its way through the scientific literature on interstellar flight, later being applied in situations that wed it with technologies other than sails. Thus Al Jackson and Daniel Whitmire, who in 1977 considered...
Ion Propulsion: The Stuhlinger Factor
How helpful can electric propulsion become as we plan missions into the local interstellar medium? We can think about this in terms of the Voyager probes, which remain our only operational craft beyond the heliosphere. Voyager 1 moved beyond the heliopause in 2012, which means 35 years between launch and heliosphere exit. But as Nadim Maraqten (Universität Stuttgart) noted in a presentation at the recent International Astronautical Congress, reaching truly unperturbed interstellar space involves getting to 200 AU. We'd like to move faster than Voyager, but how? Working with Angelo Genovese (Initiative for Interstellar Studies), Maraqten offers up a useful analysis of electric propulsion, calling it one of the most promising existing propulsion technologies, along with various sail concepts. In fact, the two modes have been coupled in some recent studies, about which more as we proceed. The authors believe that the specific impulse of an EP spacecraft must exceed 5000 seconds to make...
M-Dwarfs: The Asteroid Problem
I hadn’t intended to return to habitability around red dwarf stars quite this soon, but on Saturday I read a new paper from Anna Childs (Northwestern University) and Mario Livio (STScI), the gist of which is that a potential challenge to life on such worlds is the lack of stable asteroid belts. This would affect the ability to deliver asteroids to a planetary surface in the late stages of planet formation. I’m interested in this because it points to different planetary system architectures around M-dwarfs than we’re likely to find around other classes of star. What do observations show so far? You’ll recall that last week we looked at M-dwarf planet habitability in the context of water delivery, again involving the question of early impacts. In that paper, Tadahiro Kimura and Masahiro Ikoma found a separate mechanism to produce the needed water enrichment, while Childs and Livio, working with Rebecca Martin (UNLV) ponder a different question. Their concern is that red dwarf planets...
M-Dwarf Habitable Planets: The Water Factor
Small M-dwarf stars, the most common type of star in the galaxy, are likely to be the primary target for our early investigations of habitable planets. The small size of these stars and the significant transit depth this allows when an Earth-mass planet crosses their surface as seen from Earth mean that atmospheric analysis by ground- and space-based telescopes should be feasible via transmission spectroscopy. Recent studies have shown that the James Webb Space Telescope has the precision to at least partially characterize the atmospheres of Earth-class planets around some M-dwarfs. Soon-to-be commissioned ground-based extremely large telescopes will likewise play a role as we examine nearby transiting systems. But M-dwarfs make challenging homes for life, if indeed it can exist there. In addition to flare activity, we also have to reckon with the presence of water. Too much of it could suppress weathering in the geochemical carbon cycle, but too little does not allow for the...
Great Winds from the Sky
Do we need to justify pushing our limits? Doing so is at the very heart of the urge to explore, which is embedded in our species. Recently, while doing some research on Amelia Earhart, I ran across a post on Maria Popova's extraordinary site The Marginalian, one that examines the realm of action within the context of the human spirit. Back in 2016, Popova was looking at Walter Lippmann (1889-1974), the famed journalist and commentator, who not long after Earhart's fatal flight into the Pacific discussed the extent of her achievement and the reasons she had flown. Here's a passage from Lippmann's New York Herald Tribune column, written on July 8, 1937, just six days after the aviator and her navigator, Fred Noonan, disappeared somewhere near Howland Island between Hawaii and Australia. Lippmann asks whether such ventures must be justified by a utilitarian purpose and concludes that what is at stake here transcends simple utility and speaks to the deepest motivations of our...
Juno: First Image from Europa
Juno's close pass of Europa on September 29 (1036 UTC) took it within 352 kilometers of the icy moon, marking the third close pass in history below 500 kilometers. The encounter saw the spacecraft come within a single kilometer of Galileo's 351 kilometers from the surface back in January of 2000, and it provided the opportunity for Juno to use its JunoCam to home in on a region north of Europa's equator. Note the high relief of terrain along the terminator, with its ridges and troughs starkly evident. Image: The complex, ice-covered surface of Jupiter's moon Europa was captured by NASA's Juno spacecraft during a flyby on Sept. 29, 2022. At closest approach, the spacecraft came within a distance of about 352 kilometers. Credit: NASA/JPL-Caltech/SWRI/MSSS. This first image from JunoCam captures features at the region called Annwn Regio, and was collected in the two-hour window available to Juno as it moved past Europa at 23.6 kilometers per second. What we hope to gain from analysis of...
Colors of a Habitable Exoplanet
When it comes to planetary habitability, it is all too easy to let our assumptions slide past without review. It's a danger to be avoided if we want to understand what may distinguish various types of habitable worlds. That's the implication of a presentation at the recent Europlanet Science Congress (EPSC), which finished its work on September 23 at the Palacio de Congresos de Granada (Spain). Tilman Spohn (International Space Science Institute) and Dennis Höning (Potsdam Institute for Climate Impact Research) have been investigating the ratio of land to ocean and the evolution of biospheres. The assumptions the duo are examining revolve around the kind of habitable world our Earth represents. Our planet draws on solar energy through continents balanced against large oceans that produce abundant rainfall. Would a given exoplanet have similar geological properties? According to the scientists, it is a balance between the emergence of continents and the volcanism and continental...
DART’s Palpable Hit
Although I had Europa on my mind yesterday, I hadn't thought to find a connection between the icy Jovian moon and the DART mission. Yet it turns out the Double Asteroid Redirection Test imaged Jupiter and Europa in July and August as the spacecraft moved toward yesterday's encounter with the binary asteroid Didymos. Controllers used the spacecraft's DRACO imager (Didymos Reconnaissance and Asteroid Camera for Optical navigation) to examine the visual separation between moon and planet, homing in on variations in the pixel count and intensity as the targets moved across the detector. All this in anticipation of the spacing that would soon be detected between the larger asteroid Didymos and its tiny companion Dimorphos. Says Peter Ericksen, SMART Nav software engineer at APL: "Every time we do one of these tests, we tweak the displays, make them a little bit better and a little bit more responsive to what we will actually be looking for during the real terminal event." Image: This is a...
Juno Closes on Europa
As the Europlanet Science Congress (EPSC) has just wrapped up in Spain’s Palacio de Congresos de Granada, I’m reminded how little time I’ve had recently to keep up with such gatherings. I do hope to have some entries on EPSC-announced findings in the near future. Today I simply note the news of an unexpected ‘heat wave’ (700?) extending 130,000 kilometers just below Jupiter’s northern aurora, one traveling at high speed toward the equator, as announced by James O’Donoghue at the EPSC. Says JAXA’s O’Donoghue: “While the auroras continuously deliver heat to the rest of the planet, these heat wave ‘events’ represent an additional, significant energy source. These findings add to our knowledge of Jupiter’s upper-atmospheric weather and climate, and are a great help in trying to solve the ‘energy crisis’ problem that plagues research into the giant planets.” I mention this work in particular because of my interest in the EPSC results but also because Jupiter has been on my mind thanks to...
The Decision Rests with You! The Day the Earth Stood Still, Seven Decades Later
Did you know that there was a plan for a sequel to The Day The Earth Stood Still, the fine Robert Wise movie (1951) about Earth's first contact with another civilization? I mention this never-filmed project because the treatment for the screenplay was developed by none other than Ray Bradbury. Nobody digs into science fiction movies like Larry Klaes, and this is just the kind of detail he unearths in the deep dives into science fiction films he regularly produces for Centauri Dreams. The fact that The Day the Earth Stood Still is a product of its time makes it all the more fascinating, for it tells us much about our attitudes toward the unknown as well as the uncertainties of our own human nature and the threat posed by technologies that could destroy us. As always, Larry pulls references out of the air that most of us would never have found and in the process puts The Day the Earth Stood Still into refreshing and clarifying context. by Larry Klaes There once was a highly evolved...
What Happens Next
I'm going to need to take some time off, a decision prompted by responsibilities outside the interstellar community that have grown to the point where I lack the time to maintain a consistent schedule on the site. I'll keep moderating comments as usual, and I have some first-rate essays coming up from other authors, but my own writing is going to have to be sporadic for the time being. Long-term, I plan to keep Centauri Dreams active for a long time, so bear with me. As soon as I can do it, I will get back to a more consistent schedule. For now, though, expect a slower pace of new posts from me.
Arrokoth: The Unbearable Lightness of Being
We're in that earliest phase of interstellar exploration that is all about nudging outward from our system into the local interstellar medium. That has already involved the Voyagers, but my plan is to keep checking in on both the Interstellar Probe concept at the Johns Hopkins Applied Physics Laboratory and the SGL probe study steadily maturing at the Jet Propulsion Laboratory. These are absorbing ventures as scientists figure out ways to do propulsion, in-flight maintenance (and in the case of SGL, in-flight assembly) and data return on timescales the Voyager team wasn't imagining when those doughty craft were launched in 1977. Nudging outward. Let's check in a bit with New Horizons, because here we have a Kuiper Belt explorer that is fully operational, and with instruments specifically designed for the environment it explores, now some 54 AU from the Sun. It's striking to think that the Juno mission is ten times closer to our star than New Horizons. The Pluto/Charon flyby seems a...