The Value of LHS 475b

LHS 475b, a planet whose diameter is all but identical to Earth's, makes news not so much because of what it is but because of what it tells us about studying the atmospheres of small rocky worlds. Credit for the confirmation of this planet goes to the NIRSpec (Near-Infrared Spectrograph) instrument aboard the James Webb Space Telescope, and LHS 475b marks the telescope’s first exoplanet catch. Data from the Transiting Exoplanet Survey Satellite (TESS) were sufficient to point scientists toward this system for a closer look. JWST confirmed the planet after only two transits. Based on this detection, the Webb telescope is going to live up to expectations about its capabilities in exoplanet work. NIRSpec is a European Space Agency contribution to the JWST mission, and a major one, as the instrument’s multi-object spectroscopy mode is able to obtain spectra of up to 100 objects simultaneously, a capability that maximizes JWST observing time. No other spectrograph in space can do this,...

read more

Sunvoyager’s Pedigree: On the Growth of Interstellar Ideas

Kelvin Long’s new paper on the mission concept called Sunvoyager would deploy inertial confinement fusion, described in the last post, to drive a spacecraft to 1000 AU in less than four years. The number pulsates with possibilities: A craft like this would move at 325 AU per year, or roughly 1500 kilometers per second, ninety times the velocity of Voyager 1. This kind of capability, which Long thinks we may achieve late in this century, would open up all kinds of fast science missions to the outer planets, the Kuiper Belt, and even the inner Oort Cloud. And the conquest of inertial confinement methods would open the prospect for later, still faster missions to nearby stars. Sunvoyager draws on the heritage of the Daedalus starship, that daring design conceived by British Interplanetary Society members in the 1970s, but as we saw last time, inertial confinement fusion (ICF) was likewise examined in a concept called Vista, and one of the pleasures of this kind of research for a...

read more

SunVoyager: A Fast Fusion Mission Beyond the Heliosphere

1000 AU makes a fine target for our next push past the heliosphere, keeping in mind that good science is to be had all along the way. Thus if we took 100 years to get to 1000 AU (and at Voyager speeds it would be a lot longer than that), we would still be gathering solid data about the Kuiper Belt, the heliosphere itself and its interactions with the interstellar medium, the nature and disposition of interstellar dust, and the plasma environment any future interstellar craft will have to pass through. We don’t have to get there fast to produce useful results, in other words, but it sure would help. The Thousand Astronomical Unit mission (TAU) was examined by NASA in the 1980s using nuclear electric propulsion technologies, one specification being the need to reach the target distance within 50 years. It’s interesting to me – and Kelvin Long discusses this in a new paper we’ll examine in the next few posts – that a large part of the science case for TAU was stellar parallax, for...

read more

Gathering the Evidence for Life on Enceladus

With a proposal for an Enceladus Orbilander mission in the works at the Johns Hopkins Applied Physics Laboratory, I continue to mull over the prospects for investigating this interesting moon. Something is producing methane in the ocean under the Enceladus ice shell, analyzed in a 2021 paper from Antonin Affholder (now at the University of Arizona) and colleagues, using Cassini data from passages through the plumes erupting from the southern polar regions. The scientists produced mathematical models and used a Bayesian analysis to weigh the probabilities that the methane is being created by life or through abiotic processes. The result: The plume data are consistent with both possibilities, although it’s interesting, based on what we know about hydrothermal chemistry on earth, that the amount of methane is higher than would be expected through any abiotic explanation. So we can’t rule out the possibility of some kind of microorganisms under the ice on Enceladus, and clearly need data...

read more

Chasing nomadic worlds: Opening up the space between the stars

Ongoing projects like JHU/APL’s Interstellar Probe pose the question of just how we define an ‘interstellar’ journey. Does reaching the local interstellar medium outside the heliosphere qualify? JPL thinks so, which is why when you check on the latest news from the Voyagers, you see references to the Voyager Interstellar Mission. Andreas Hein and team, however, think there is a lot more to be said about targets between here and the nearest star. With the assistance of colleagues Manasvi Lingam and Marshall Eubanks, Andreas lays out targets as exotic as ‘rogue planets’ and brown dwarfs and ponders the implications for mission design. The author is Executive Director and Director Technical Programs of the UK-based not-for-profit Initiative for Interstellar Studies (i4is), where he is coordinating and contributing to research on diverse topics such as missions to interstellar objects, laser sail probes, self-replicating spacecraft, and world ships. He is also an associate professor of...

read more

A Role for Comets in Europa’s Ocean?

The role comets may play in the formation of life seems to be much in the news these days. Following our look at interstellar comets as a possibly deliberate way to spread life in the cosmos, I ran across a paper from Evan Carnahan (University of Texas at Austin) and colleagues (at JPL, Williams College as well as UT-Austin) that studies the surface of Europa with an eye toward explaining how impact features may evolve. Craters could be cometary in origin and need not necessarily penetrate completely through the ice, for the team's simulations of ice deformation show drainage into the ocean below from much smaller events. Here comets as well as asteroids come into play as impactors, their role being not as carriers of life per se but as mechanisms for mixing already existing materials from the surface into the ocean. Image: Tyre, a large impact crater on Europa. Credit: NASA/JPL/DLR. That, of course, gets the attention, for getting surface oxidants produced by solar irradiation...

read more

The Ethics of Directed Panspermia

Interstellar flight poses no shortage of ethical questions. How to proceed if an intelligent species is discovered is a classic. If the species is primitive in terms of technology, do we announce ourselves to it, or observe from a distance, following some version of Star Trek's Prime Directive? One way into such issues is to ask how we would like to be treated ourselves if, say, a Type II civilization - stunningly more powerful than our own - were to show up entering the Solar System. Even more theoretical, though, is the question of panspermia, and in particular the idea of propagating life by making panspermia a matter of policy. Directed panspermia, as we saw in the last post, is the idea of using technology to spread life deliberately, something that is not currently within our power but can be reasonably extrapolated as one path humans might choose within a century or two. The key question is why we would do this, and on the broadest level, the answer takes in what seems to be...

read more

Life from Elsewhere

The idea that life on Earth came from somewhere else has intrigued me since I first ran into it in Fred Hoyle's work back in the 1980s. I already knew of Hoyle because, if memory serves, his novel The Black Cloud (William Heinemann Ltd, 1957) was the first science fiction novel I ever read. Someone brought it to my grade school and we passed the copy around to the point where by the time I got it, the paperback was battered though intact. Its cover remains a fine memory. I remember being ingenious about appearing to be reading an arithmetic text in class while actually reading the Hoyle novel. In the book, the approach of a cloud of dust and gas in the Solar System occasions alarm, with projections of the end of photosynthesis as the Sun's light is blocked. Even more alarming are the unexpected movements of the cloud once it arrives, which suggest that it is no inanimate object but a kind of organism. I've been meaning to re-read The Black Cloud for years and this post energizes me...

read more

Interstellar Communications: The Pointing Problem

Some topics just take off on their own. Several days ago, I began working on a piece about Europa Clipper's latest news, the installation of the reaction wheels that orient the craft for data return to Earth and science studies at target. But data return is one thing for spacecraft working at radio frequencies within the Solar System, and another for much more distant craft, perhaps in interstellar space, using laser methods. So spacecraft orientation in the Solar System triggered my recent interest in the problem of laser pointing beyond the heliosphere, which is acute for long-haul spacecraft like Interstellar Probe, a concept we've recently examined. Because unlike radio methods, laser communications involve an extremely tight, focused beam. Get far enough from the Sun and that beam will have to be exquisitely precise in its placement. So let's take a quick look at Europa Clipper's methods for orienting itself in space, and Voyager's as well, and then move on to how Interstellar...

read more

Europa’s Patchy Plate Tectonics

I keep an eye on recent findings about Europa because fine-tuning procedures for the science that missions like Europa Clipper and JUICE (Jupiter Icy Moons Explorer) will perform at the Jovian moon is an ongoing process that doesn’t stop at launch. The more we learn now – the more anomalies we uncover or processes we begin to glimpse – the better able we’ll be to adjust spacecraft observing strategies to go after the answers to these phenomena. A new study teaches us a bit more about Europa’s plate tectonics, the only solid evidence of tectonics we know of other than Earth’s. And it will take new high-resolution imagery to confirm the theories put forth within it. Appearing in the Journal of Geophysical Research: Planets, the paper looks at the processes that evidently govern the evolution of the fractured Europan surface the Galileo mission revealed to us back in the 1990s. What’s intriguing here is the identification of Europan tectonic plates in the context of deep time. If a...

read more

WASP-39b: JWST and Exoplanet Atmospheres

Although I often see the exoplanet WASP-39b referred to as a ‘hot Saturn,’ and sometimes a ‘hot Jupiter,’ the terms don’t really compute. This is a world closer to Saturn than Jupiter in mass, but with a radius somewhat larger than that of Jupiter. Hugging its G-class primary in a seven million kilometer orbit, it completes a circuit every four days. The system is about 700 light years from us in Virgo, and to my mind WASP-39b is a salutary reminder that we can carry analogies to the Solar System only so far. Because we have nothing in our system that remotely compares to WASP-39b. Let’s celebrate the fact that in this exoplanet we have the opportunity to study a different kind of planet, and remind ourselves of how many worlds we’re finding that are not represented by our own familiar categories. I imagine one day we'll have more descriptive names for what we now call, by analogy, 'super-Earths' and 'sub-Neptunes' as well. I've seen WASP-39b referred to in the literature as a...

read more

Interstellar Probe: Prospects for ESA Technologies

The Interstellar Probe concept being developed at Johns Hopkins Applied Physics Laboratory is not alone in the panoply of interstellar studies. We've examined the JHU/APL effort in a series of articles, the most recent being NASA Interstellar Probe: Overview and Prospects. But we should keep in mind that a number of white papers have been submitted to the European Space Agency in response to the effort known as Cosmic Vision and Voyage 2050. One of these, called STELLA, has been put forward to highlight a potential European contribution to the NASA probe beyond the heliosphere. Image: A broad theme of overlapping waves of discovery informs ESA's Cosmic Vision and Voyage 2050 report, here symbolized by icy moons of a gas giant, an temperate exoplanet and the interstellar medium itself, with all it can teach us about galactic evolution. Among the projects discussed in the report is NASA's Interstellar Probe concept. Credit: ESA. Remember that Interstellar Probe (which needs a catchier...

read more

KOBE: The Hunt for Habitable Zone K-dwarf Planets

From the standpoint of producing interesting life, K-dwarf stars look intriguing. Our G-class Sun is warm and cozy, but its lifetime is only about 10 billion years, while K-dwarfs (we can also call them orange dwarfs) can last up to 45 billion years. That's plenty of time for evolution to work its magic, and while G-stars make up only about 6 or 7 percent of the stars in the galaxy, K-dwarfs account for three times that amount. We have about a thousand K-dwarfs within 100 light years of the Solar System. When Edward Guinan (Villanova University) and colleague Scott Engle studied K-dwarfs in a project called "GoldiloKs," they measured the age, rotation rate, and X-ray and far-ultraviolet radiation in a sampling of mostly cool G and K stars (see Orange Dwarfs: 'Goldilocks' Stars for Life?). Their work took in a number of K-stars hosting planets, including the intriguing Kepler-442, which has a rocky planet in the habitable zone. Kepler-442b is where we'd like it to be in terms of...

read more

Simultaneous Growth of Planet & Star?

I’m interested in a new paper on planet formation, not only for its conclusions but its methodology. What Amy Bonsor (University of Cambridge) and colleagues are drawing from their data is how quickly planets can form. We’ve looked numerous times in these pages at core accretion models that explain the emergence of rocky worlds and gravitational instability models that may offer a way of producing a gas giant. But how long after the formation of the circumstellar disk do these classes of planets actually appear? A planet like the Earth poses fewer challenges than a Jupiter or Saturn. Small particles run into each other within the gas and dust disk surrounding the young star, assembling planets and other debris through a process of clumping that eventually forms planetesimals that themselves interact and collide. Thus core accretion: The planet ‘grows’ in ways that are readily modeled and can be observed in disks around other stars. But the gas giants still pose problems. Core...

read more

Super Earths/Hycean Worlds

Dave Moore is a Centauri Dreams regular who has long pursued an interest in the observation and exploration of deep space. He was born and raised in New Zealand, spent time in Australia, and now runs a small business in Klamath Falls, Oregon. He counts Arthur C. Clarke as a childhood hero, and science fiction as an impetus for his acquiring a degree in biology and chemistry. Dave has kept up an active interest in SETI (see If Loud Aliens Explain Human Earliness, Quiet Aliens Are Also Rare) as well as the exoplanet hunt, and today examines an unusual class of planets that is just now emerging as an active field of study. by Dave Moore Let me draw your attention to a paper with interesting implications for exoplanet habitability. The paper is “Potential long-term habitable conditions on planets with primordial H–He atmospheres,” by Marit Mol Lous, Ravit Helled and Christoph Mordasini. Published in Nature Astronomy, this paper is a follow-on to Madhusudhan et al’s paper on Hycean...

read more

Stapledon’s Hawk

Walking along dark streets this morning, as autumn leaves gusted past under a deepening lunar eclipse, I realized that there was a reason for my recent foray into what I called ‘Stapledon thinking.’ The reason: Landscape by moonlight. What these early walks remind me of is the beginning of Olaf Stapledon’s 1937 novel Star Maker, in which the narrator takes a similar walk in the darkness, musing on his personal relationships as well as his place in the larger structure of the cosmos (I’m using the word ‘structure’ there deliberately, as we’ll see later). The narrator walks to a hill overlooking houses below, somewhere near the sea. There is a lighthouse. He sits down on the heather. And now ‘the hawk-flight of imagination,’ in Stapledon’s lovely phrase, takes over. An astral journey begins: Imagination was now stimulated to a new, strange mode of perception. Looking from star to star, I saw the heaven no longer as a jeweled ceiling and floor, but as depth beyond flashing depth of...

read more

In Person or Proxy to Mars and Beyond?

Larry Klaes is well known in these parts for his extraordinary reviews of classic science fiction films. Today, however, he steps back from cinema to consider how we will expand into space. The crews on our deep space missions will doubtless be a lot different than some of those old black-and-white movies would suggest. Just how will our species adapt to the environments it will soon be exploring? There's nothing quite so lush as our own blue and green planet, yet the imperative to move ever outward is a driver for our species. Mars is a case in point, but the long-range picture is that we're looking off-planet and already pondering destinations beyond the Solar System. Re-shaping our expectations will be a part of what drives the scientists and engineers who equip us for the next steps. An earlier version of this essay was published by The Mars Society. by Larry Klaes In 1972, singer, pianist, and composer Sir Elton Hercules John (born 1947) released a song titled "Rocket Man". This...

read more

A New Trio of ‘Twilight’ Asteroids

I have further thoughts on 'Stapledon thinking,' as discussed in the last post, but my second piece on the topic isn't ready just yet, and in any case I want to give a quick nod to a topic we looked at a few months back, the discovery and analysis of Near Earth Objects that orbit between the Sun and the orbit of Earth. So far we haven't found many of these 'twilight objects,' but the attempts to find them continue. As witness current work with an exceptional instrument. The Dark Energy Camera is a wide-field CCD imager, mounted on a 4-meter telescope at Cerro Tololo (Chile), that was designed for the Dark Energy Survey. The latter mapped hundreds of millions of galaxies to look for insights into the structure of the cosmos. The DES ended in 2019, but DECam continues to produce data that have helped us find fascinating objects like 2015 TG387, a dwarf planet on an extreme orbit that takes it to aphelion at 1000 AU, with a closest solar approach of 65 AU. DECam has also found 12 new...

read more

A Nod to ‘Stapledon Thinking’

Taking a long walk in the early morning hours (and I do mean ‘early,’ as I usually walk around 4 AM – Orion is gorgeously high in the sky this time of year in the northern hemisphere), I found myself musing on terminologies. The case in point: The Fermi Paradox. Using that phrase, the issue becomes starkly framed. If there are other civilizations in the galaxy, why don’t we have evidence for them? Much ink, both physical and digital, has been spilled over the issue, but I will argue that we should soften the term ‘paradox.’ I prefer to call the ‘where are they’ formulation the Fermi Question. I prefer ‘question’ rather than ‘paradox’ because I don’t think we have enough data to declare what we do or do not see about other civilizations a paradox. A paradox is a seemingly self-contradictory statement that demands explanation. But is anything actually demanded here? There are too many imponderables in this case to even frame the contradiction. How can we have a paradox when we are...

read more

Biosignatures: The Case for Nitrous Oxide

Are we overlooking a potential biosignature? A new study makes the case that nitrous oxide could be a valuable indicator of life on other worlds, and one that can be detected with current and future instrumentation. In today’s essay, Don Wilkins takes a close look at the paper. A retired aerospace engineer with thirty-five years experience in designing, developing, testing, manufacturing and deploying avionics, Don tells me he has been an avid supporter of space flight and exploration all the way back to the days of Project Mercury. Based in St. Louis, where he is an adjunct instructor of electronics at Washington University, Don holds twelve patents and is involved with the university’s efforts at increasing participation in science, technology, engineering, and math. by Don Wilkins Biosignatures, specific signals produced by life, are the focus of intense study within the astronomical community. Gases such as nitrogen (N2), oxygen and methane are sought in planetary atmospheres as...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives