Freeman Dyson’s Advice to a College Freshman

Anyone who ever had the pleasure of talking to Freeman Dyson knows that he was a gracious man deeply committed to helping others. My own all too few exchanges with him were on the phone or via email, but he always gave of his time no matter how busy his schedule. In the article below, Colin Warn offers an example, one I asked him for permission to publish so as to preserve these Dysonian nuggets for a wider audience. Colin is an Associate Propulsion Component Engineer at Maxar, with a Bachelor of Science in mechanical engineering from Washington State University. His research interests dip into in everything from electric spacecraft propulsion to small satellite development, machine learning and machine vision applications for microrobotics. Thus far in his young career, he has published two papers on the topics of nuclear gas core rockets and interstellar braking mechanisms in the Journal of the British Interplanetary Society. He tells me that when he's not working on interstellar...

read more

An Evolutionary Path for ‘Mini-Neptunes’

It would explain a lot if two recent discoveries involving 'mini-Neptunes' turned out to be representative of what happens to their entire class. For Michael Zhang (Caltech) and colleagues, in two just published papers, have found that mini-Neptunes can lose gas to their parent star, possibly indicating their transformation into a 'super-Earth.' If such changes are common, then we have a path to get from a dense but Neptune-like world to a super-Earth, a planet roughly 1.6 times the size of the Earth and part of a category of worlds we do not see represented in our Solar System. As we drill down toward finding smaller worlds, we've been finding a lot of mini-Neptunes as well as super-Earths, with the former two to four times the size of the Earth. Thus we have a bimodal gap in exoplanet observation. Where are the worlds between 1.6 and 2-4 times the size of Earth? The new work examines two mini-Neptunes around the TESS object TOI 560, located about a hundred light-years from Earth,...

read more

A New Search Space for Exomoons?

Given our recent discussion of exomoon candidate Kepler-1708 b-i, a possible moon 2.6 times the mass of Earth orbiting a gas giant, I want to be sure to work in Miki Nakajima’s work on how moons form. Nakajima (University of Rochester) is first author of the paper describing this work. It’s a significant contribution because it points to a way to refine the target list for exomoon searches, one that may help us better understand where to look as we begin to flesh out a catalog of these objects.. And flesh it out we will, as the precedent of the rapidly growing exoplanet count makes clear. What I want to do today is consider how we’ve thus far proceeded. You’ll recall that when David Kipping and team performed their deep analysis of the data leading to Kepler-1708 b-i, they chose gas giants on orbits with a period of 400 days or more, so-called ‘cool worlds’ more like Jupiter than the ‘hot Jupiters’ found so frequently in early exoplanet studies. The method produced a strong candidate...

read more

Planetary Birth around Dying Stars

Half a century ago, we were wondering if other stars had planets, and although we assumed so, there was always the possibility that planets were rare. Now we know that they’re all over the place. In fact, recent research out of Katholieke Universiteit Leuven in Belgium suggests that under certain circumstances, planets can form around stars that are going through their death throes, beginning the transition from red giant to white dwarf. The new work homes in on certain binary stars, and therein hangs a tale. After a red giant star has gone through the stage of helium burning at its core, it is referred to as an asymptotic giant branch star (AGB), on a path that takes it through a period of expansion and cooling prior to its becoming a white dwarf. These expanding stars lose mass as the result of stellar wind, up to 50 to 70 percent of the total mass of the star. The result: An extended envelope of material collecting around the object that will become a planetary nebula, a glowing...

read more

Unusual Transient: A New Kind of Magnetar?

Every time we look in a new place, which in astrophysics often means bringing new tools online, we find something unexpected. The news that an object has been detected that, for one minute in every 18, becomes one of the brightest radio sources in the sky, continues the series of surprises we've been racking up ever since first Galileo put eye to telescope. So what is this object, and why is it cause for such interest? Here's astronomer Natasha Hurley-Walker (Curtin University/International Centre for Radio Astronomy Research), who is lead author of the paper on the discovery: "This object was appearing and disappearing over a few hours during our observations. That was completely unexpected. It was kind of spooky for an astronomer because there's nothing known in the sky that does that. And it's really quite close to us—about 4000 lightyears away. It's in our galactic backyard." Image: A new view of the Milky Way from the Murchison Widefield Array in Western Australia, with...

read more

White Paper: Why We Should Seriously Evaluate Proposed Space Drives

Moving propulsion technology forward is tough, as witness our difficulties in upgrading the chemical rocket model for deep space flight. But as we've often discussed on Centauri Dreams, work continues in areas like beamed propulsion and fusion, even antimatter. Will space drives ever become a possibility? Greg Matloff, who has been surveying propulsion methods for decades, knows that breakthroughs are both disruptive and rare. But can we find ways to increase the odds of discovery? A laboratory created solely to study the physics issues space drives would invoke could make a difference. There is precedent for this, as the author of The Starflight Handbook (Wiley, 1989) and Deep Space Probes (Springer, 2nd. Ed., 2005) makes clear below. by Greg Matloff We live in very strange times. The possibility of imminent human contraction (even extinction) is very real. So is the possibility of imminent human expansion. On one hand, contemporary global civilization faces existential threats from...

read more

The Persistent Case for Exomoon Candidate Kepler-1708 b-i

We started finding a lot of 'hot Jupiters' in the early days of planet hunting simply because, although their existence was not widely predicted, they were the most likely planetary types to trigger our radial velocity detection methods. These star-hugging worlds produced a Doppler signal that readily showed the effects of planet on star, while smaller worlds, and planets farther out in their orbits, remained undetected. David Kipping (Columbia University) uses hot Jupiters as an analogy when describing his own indefatigable work hunting exomoons. We already have one of these - Kepler-1625 b-i - but it remains problematic and unconfirmed. If this turned out to be the first in a string of exomoons, we might well expect all the early finds to be large moons simply because using transit methods, these would be the easiest to detect. Kepler-1625 b-i is problematic because the data could be showing the effects of other planets in its system. If real, it would be a moon far larger than any...

read more

A Continuum of Solar Sail Development

2020 GE is an interesting, and soon to be useful, near-Earth asteroid. Discovered in March of 2020 through the University of Arizona's Catalina Sky Survey, 2020 GE is small, no more than 18 meters or so across, placing it in that class of asteroids below 100 meters in size that have not yet been examined up close by our spacecraft. Moreover, this NEA will, in September of 2023, obligingly make a close approach to the Earth, allowing scientists to get that detailed look through a mission called NEA Scout. This is a mission we've looked at before, and I want to stay with it because of its use of a solar sail. Scheduled to be launched with the Artemis 1 test flight using the Space Launch System (SLS) rocket no earlier than March of this year, NEA Scout is constructed as a six-unit CubeSat, one that will be deployed by a dispenser attached to an adapter ring connecting the rocket with the Orion spacecraft. After separation, the craft will unfurl a sail of 86 square meters, deployed via...

read more

The Dyson Sphere Search

The Dyson sphere has become such a staple of SETI as well as science fiction that it’s hard to conceive how lightly Freeman Dyson himself took the idea. In a 2008 interview with Slate, he described the Dyson sphere as no more than ‘a little joke,’ and noted “it's amusing that of course you get to be famous only for the things you don't think are serious.” Indeed, Dyson’s 1960 paper “Search for Artificial Stellar Sources of Infrared Radiation,” was but a one-page document in Science that grew out of his notion that an intelligent civilization might not have any interest in communicating. How, then, would astronomers on Earth go about finding it? Waste heat was his answer, a nod to the laws of thermodynamics and the detectability of such heat in the infrared. Coming hard on the heels of Frank Drake’s Project Ozma (a likewise playful name, coined out of affection for L. Frank Baum's imaginary land of Oz), Dyson saw a search for what would come to be called Dyson spheres as a complement...

read more

Dyson Sphere ‘Feedback’: A Clue to New Observables?

Although so-called Dysonian SETI has been much in the air in recent times, its origins date back to the birth of SETI itself. It was in 1960 – the same year that Frank Drake used the National Radio Astronomy Observatory in Green Bank, West Virginia to study Epsilon Eridani and Tau Ceti – that Freeman Dyson proposed the Dyson sphere. In fiction, Olaf Stapledon had considered such structures in his novel Star Maker in 1937. As Macy Huston and Jason Wright (both at Penn State) remind us in a recent paper, Dyson’s idea of energy-gathering structures around an entire star evolved toward numerous satellites around the star rather than a (likely unstable) single spherical shell. We can’t put the brakes on what a highly advanced technological civilization might do, so both solid sphere and ‘swarm’ models can be searched for, and indeed have been, for in SETI terms we’re looking for infrared waste heat. And if we stick with Dyson (often a good idea!), we would be looking for structures...

read more

The Long Result: Star Travel and Exponential Trends

Reminiscing about some of Robert Forward's mind-boggling concepts, as I did in my last post, reminds me that it was both Forward as well as the Daedalus project that convinced many people to look deeper into the prospect of interstellar flight. Not that there weren't predecessors - Les Shepherd comes immediately to mind (see The Worldship of 1953) - but Forward was able to advance a key point: Interstellar flight is possible within known physics. He argued that the problem was one of engineering. Daedalus made the same point. When the British Interplanetary Society came up with a starship design that grew out of freelance scientists and engineers working on their own dime in a friendly pub, the notion was not to actually build a starship that would bankrupt an entire planet for a simple flyby mission. Rather, it was to demonstrate that even with technologies that could be extrapolated in the 1970s, there were ways to reach the stars within the realm of known physics. Starflight was...

read more

Interstellar Reach: The Challenge of Beamed Energy

I’ve learned that you can’t assume anything when giving a public talk about the challenge of interstellar flight. For a lot of people, the kind of distances we’re talking about are unknown. I always start with the kind of distances we’ve reached with spacecraft thus far, which is measured in the hundreds of AUs. With Voyager 1 now almost 156 AU out, I can get a rise out of the audience by showing a slide of the Earth at 1 AU, and I can mention a speed: 17.1 kilometers per second. We can then come around to Proxima Centauri at 260,000 AU. A sense of scale begins to emerge. But what about propulsion? I’ve been thinking about this in relation to a fundamental gap in our aspirations, moving from today’s rocketry to what may become tomorrow’s relativistic technologies. One thing to get across to an audience is just how little certain things have changed. It was exhilarating, for example, to watch the Arianne booster carry the James Webb Space Telescope aloft, but we’re still using...

read more

Energetics of Archaean Life in the Ocean Vents

If SETI is all about intelligence, and specifically technology, at the other end of astrobiology is the question of abiogenesis. Does life of any kind in fact occur elsewhere, or does Earth occupy a unique space in the scheme of things? Alex Tolley looks today at one venue where life may evolve, deep inside planetary crusts, with implications that include what we may find "locally" at places like Europa or Titan. In doing so, he takes a deep dive into a new paper from Jeffrey Dick and Everett Shock, while going on to speculate on broader questions forced by life's emergence. Organisms appearing in the kind of regions we are discussing today would doubtless be undetectable by our telescopes, but with favorable energetics, deep ocean floors may spawn abundant life outside the conventional habitable zone, just as they have done within our own 'goldilocks' world. by Alex Tolley Are the deep hot ocean vents more suitable for life than previously thought? In a previous article [1] I...

read more

The ‘Disintegrating Planet’ Factor

Using machine learning to provide an algorithmic approach to the abundant data generated by the Transiting Exoplanet Survey Satellite (TESS) has proven unusually productive. I'm looking at an odd object called TIC 400799224, as described in a new paper in The Astronomical Journal from Brian Powell (NASA GSFC) and team, a source that displays a sudden drop in brightness - 25% in a matter of four hours - followed by a series of brightness variations. What's going on here? We're looking at something that will have to be added to a small catalog of orbiting objects that emit dust; seven of these are presented in the paper, including this latest one. The first to turn up was KIC 12557548, whose discovery paper in 2012 argued that the object was a disintegrating planet emitting a dust cloud, a model that was improved in subsequent analyses. K2-22b, discovered in 2015, showed similar features, with varying transit depths and shapes, although no signs of gas absorption.. In fact, the objects...

read more

Rogue Planet Discoveries Challenge Formation Models

As we begin the New Year, I want to be sure to catch up with the recent announcement of a discovery regarding 'rogue' planets, those interesting worlds that orbit no central star but wander through interstellar space alone (or, conceivably, with moons). Conceivably ejected from their host stars through gravitational interactions (more on this in a moment), such planets become interstellar targets in their own right, as given the numbers now being suggested, there may be rogue planets near the Solar System. Image: Rogue planets are elusive cosmic objects that have masses comparable to those of the planets in our Solar System but do not orbit a star, instead roaming freely on their own. Not many were known until now, but a team of astronomers, using data from several European Southern Observatory (ESO) telescopes and other facilities, have just discovered at least 70 new rogue planets in our galaxy. This is the largest group of rogue planets ever discovered, an important step towards...

read more

The Goodness of the Universe

The end of one year and the beginning of the next seems like a good time to back out to the big picture. The really big picture, where cosmology interacts with metaphysics. Thus today's discussion of evolution and development in a cosmic context. John Smart wrote me after the recent death of Russian astronomer Alexander Zaitsev, having been with Sasha at the 2010 conference I discussed in my remembrance of Zaitsev. We also turned out to connect through the work of Clément Vidal, whose book The Beginning and the End tackles meaning from the cosmological perspective (see The Zen of SETI). As you'll see, Smart and Vidal now work together on concepts described below, one of whose startling implications is that a tendency toward ethics and empathy may be a natural outgrowth of networked intelligence. Is our future invariably post-biological, and does such an outcome enhance or preclude journeys to the stars? John Smart is a global futurist, and a scholar of foresight process,...

read more

Remote Observation: What Could ET See?

As we puzzle out the best observing strategies to pick up a bio- or technosignature, we're also asking in what ways our own world could be observed by another civilization. If such exist, they would have a number of tools at their disposal by which to infer our existence and probe what we do. Extrapolation is dicey, but we naturally begin with what we understand today, as Brian McConnell does in this, the third of a three-part series on SETI issues. A communications systems engineer, Brian has worked with Alex Tolley to describe a low-cost, high-efficiency spacecraft in their book A Design for a Reusable Water-based Spacecraft Known as the Spacecoach (Springer, 2015). His latest book is The Alien Communication Handbook -- So We Received A Signal, Now What? recently published by Springer Nature. Is our existence so obvious to the properly advanced observer? That doubtless depends on the state of their technology, about which we know nothing, but if the galaxy includes billion-year old...

read more

A Holiday Check-in with New Horizons

The fact that we have three functioning spacecraft outside the orbit of Pluto fills me with holiday good spirits. Of the nearest of the three, I can say that since New Horizons' January 1, 2019 encounter with the Kuiper Belt Object now known as Arrokoth, I have associated the spacecraft with holidays of one kind or another The July 14, 2015 flyby of Pluto/Charon wasn't that far off the US national holiday, but more to the point, I was taking a rare beach vacation during the last of the approach phase, most of my time spent indoors with multiple computers open tracking events at system's edge. It felt celebratory, like an extended July 4, even if the big event was days later. Also timely as the turn of the year approaches is Alan Stern's latest PI's Perspective, a look at what's ahead for the plucky spacecraft. Here January becomes a significant time, with the New Horizons team working on the proposal for another mission extension, the last of which got us through Arrokoth and...

read more

All Your Base Are Belong To Us! : Alien Computer Programs

If you were crafting a transmission to another civilization -- and we recently discussed Alexander Zaitsev's multiple messages of this kind -- how would you put it together? I'm not speaking of what you might want to tell ETI about humanity, but rather how you could make the message decipherable. In the second of three essays on SETI subjects, Brian McConnell now looks at enclosing computer algorithms within the message, and the implications for comprehension. What kind of information could algorithms contain vs. static messages? Could a transmission contain programs sufficiently complex as to create a form of consciousness if activated by the receiver's technnologies? Brian is a communication systems engineer and expert in translation technology. His book The Alien Communication Handbook (Springer, 2021) is now available via Amazon, Springer and other booksellers. by Brian S McConnell In most depictions of SETI detection scenarios, the alien transmission is a static message, like...

read more

Into the Atmosphere of a Star

We've been learning about the solar wind ever since the first interplanetary probes began to leave our planet's magnetosphere to encounter this rapidly fluctuating stream of plasma. Finding a way to harness the flow could open fast transport to the outer Solar System if we can cope with the solar wind's variability - no small matter - but in any case learning as much as possible about its mechanisms furthers our investigation of possible propulsive techniques. On this score and for the sake of solar science, we have much reason to thank the Parker Solar Probe and its band of controllers as the spacecraft continues to tighten its approaches to the Sun. The spacecraft's repeated passes by the Sun, each closer than the last, take advantage of speed and a heat shield to survive each perihelion event, and the last for which we have data was noteworthy indeed. During it, the Parker Solar Probe moved three separate times into and out of the Sun's corona. This is a region where magnetic...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives