Google will no longer be supporting its email distribution service as of July 1, and I am preparing for this through the work of my friend Frank Taylor, who is fine-tuning a replacement. However, I've had a few reports already of emails not being delivered. So if you are an email subscriber to Centauri Dreams, please bear with us as Frank gets the new service up and running. This may take a few more days. There will be no need to re-subscribe, as the existing subscription list will be transferred to the new feed.
An AI Toolbox for Space Research
Let's take a brief break from research results and observational approaches to consider the broader context of how we do space science. In particular, what can we do to cut across barriers between different disciplines as well as widely differing venues? Working on a highly directed commercial product is a different process than doing academic research within the confines of a publicly supported research lab. And then there is the question of how to incorporate ever more vigorous citizen science. SpaceML is an online toolbox that tackles these issues with a specific intention of improving the artificial intelligence that drives modern projects, with the aim of boosting interdisciplinary work. The project's website speaks of "building the Machine Learning (ML) infrastructure needed to streamline and super-charge the intelligent applications, automation and robotics needed to explore deep space and better manage our planetary spaceship." I'm interested in the model developing here,...
Finding the Missing Link: How We Could Discover Interstellar Quantum Communications
Six decades of SETI have yet to produce a detection. Are there strategies we have missed? In today’s essay, Michael Hippke takes us into the realm of quantum communication, explaining how phenomena like ‘squeezed light’ can flag an artificial signal with no ambiguity. Quantum coherence, he argues, can be maintained over interstellar distances, and quantum methods offer advantages in efficiency and security that are compelling. Moreover, techniques exist with commercially available equipment to search for such communications. Hippke is a familiar face on Centauri Dreams, having explored topics from the unusual dimming of Boyajian’s Star to the detection of exomoons using what is known as the orbital sampling effect. He is best known for his Transit Least Squares (TLS) exoplanet detection method, which is now in wide use and has accounted for the discovery of ~ 100 new worlds. An astrophysics researcher at Sonneberg Observatory and visiting scholar for Breakthrough Listen at...
Mapping the Boundary of the Heliosphere
Between the Solar System and interstellar space is a boundary layer called the heliosheath. Or maybe I should define this boundary as being between the inner, planetary part of the Solar System and interstellar space. After all, we consider the Oort Cloud as part of our own system, yet it begins much further out. Both Voyagers have crossed the region where the Sun's heliosphere ends and interstellar space begins, while they won't reach the Oort, by some estimates, for another 300 years. The broader region is called the heliopause, a place where the outflowing solar wind of protons, electrons and alpha particles (two protons and two neutrons tightly bound) encounters what we can call the interstellar wind, itself pushing up against the heliosphere and confining the solar wind-dominated region to a bubble. We now learn that this boundary region has been mapped, showing interactions at the interface. A paper describing this feat has now appeared, with Dan Reisenfeld (Los Alamos National...
Brown Dwarfs & Rogue Planets as JWST Targets
About 1,000 light years away in the constellation Perseus, the stellar nursery designated NGC 1333 is emerging as a priority target for astronomers planning to use the James Webb Space Telescope. Brown dwarfs come into play in the planned work, as do the free-floating 'rogue' planets we discussed recently. For NGC 1333 is a compact, relatively nearby target, positioned at the edge of a star-forming molecular cloud. It's packed with hundreds of young stars, many of them hidden from view by dust, a venue in which to observe star formation in action. Hoping to learn more about very low mass objects, Aleks Scholz (University of St Andrews, UK) lays out plans for using JWST to chart the distinctions between objects that emerge out of gravitational collapse of gas and dust clouds, and objects that grow through accretion inside a circumstellar disk. Says Scholz: "The least massive brown dwarfs identified so far are only five to 10 times heftier than the planet Jupiter. We don't yet know...
NEO Surveyor: Proposed Asteroid Surveillance Mission
Near-Earth Object Surveyor is a proposed space telescope working at infrared wavelengths, an instrument that just completed a successful mission review and now moves on to the next phase of mission development. In NASA parlance, the upcoming Key Decision Point-B moves into Preliminary Design territory. Getting a spacecraft from concept to flight is a long process, but let's back out to the broader picture. Planetary defense is all about finding objects that could impact the Earth with serious consequences. That means setting size targets, and on that score, we're making progress. In 2010, NASA announced that it had identified 90 percent of all Near Earth Objects larger than 1,000 meters. That moved us to the next target, NEOs larger than 140 meters in size, a goal set by the National Aeronautics and Space Administration Act of 2005. JPL now says about 40% of NEOs within this size range have been identified. So with this work in progress, what does NEO Surveyor bring to the table? For...
A Visualization of Galactic Settlement
When the question of technosignatures at Alpha Centauri came up at the recent Breakthrough Discuss conference, the natural response was to question the likelihood of a civilization emerging around the nearest stars to our own. We kicked that around in Alpha Centauri and the Search for Technosignatures, focusing on ideas presented by Brian Lacki (UC-Berkeley) at the meeting. But as we saw in that discussion, we don't have to assume that abiogenesis has to occur in order to find a technosignature around any particular star. Ask Jason Wright (Penn State) and colleagues Jonathan Carroll-Nellenback and Adam Frank (University of Rochester) as well as Caleb Scharf (Columbia University), whose analysis of galaxies in transition has now produced a fine visual aid. Described in a short paper in Research Notes of the AAS, the simulation makes a major point: If civilizations last long enough to produce star-crossing technologies, then technosignatures may be widespread, found in venues across...
Liquid Water on a Free Floating Planet’s Moon?
As we learn more about how planetary systems form, it's becoming accepted that a large number of planets are being ejected from young systems because of their interactions with more massive worlds. I always referred to these as 'rogue planets' in previous articles on the subject, but a new paper from Patricio Javier Ávila (University of Concepción, Chile) and colleagues makes it clear that the term Free Floating Planet (FFP) is now widespread. A new acronym for us to master! There have been searches to try to constrain the number of free floating planets, though the suggested ranges are wide. Microlensing seems the best technique, as it can spot masses we cannot otherwise see through their effect on background starlight. Of these, the estimates come in at around 2 Jupiter-mass planets and 2.5 terrestrial-class rocky worlds per star that have been flung into the darkness. This is a vast number of planets, but we have to be wary of mass uncertainties, as the cut-off between...
A Rapidly Growing Catalog of Fast Radio Bursts
Hard to believe that Fast Radio Bursts (FRBs) were only discovered in 2007, as it seems we've been puzzled by them for a lot longer. Thus far about 140 FRBs have been detected, but now we have news that the Canadian Hydrogen Intensity Mapping Experiment (CHIME) has pulled in a total of 535 new fast radio bursts in its first year of operation between 2018 and 2019. The catalog growing from this work was presented this week at the annual meeting of the American Astronomical Society. "Before CHIME, there were less than 100 total discovered FRBs; now, after one year of observation, we've discovered hundreds more," says CHIME member Kaitlyn Shin, a graduate student in MIT's Department of Physics. "With all these sources, we can really start getting a picture of what FRBs look like as a whole, what astrophysics might be driving these events, and how they can be used to study the universe going forward." Image: The large radio telescope CHIME, pictured here, has detected more than 500...
TOI 1231b: A Useful Temperate Sub-Neptune
The beauty of nearby M-dwarf stars for exoplanet research is the depth of transits. If we are fortunate enough to find a planet crossing the face of the star as seen from our observatory, the star's small size means a larger portion of its light will be attenuated. As you would imagine, this makes planets easier to spot, but the other significant advantage is that we have greater capability at analyzing the planet's atmosphere. TOI-1231b certainly fits the bill, although it's a bit of an anomaly in the TESS universe. The space observatory operates with a built in observational bias because the Science Processing Operations Center (SPOC) pipeline and the Quick Look Pipeline (QLP) that comb through TESS data on a 2-minute and 30 minute cadence respectively have to show two transits for the planet's period to be determined. Factor in that most of the TESS sky coverage is observed for 28 days and you wind up in the majority of cases with detections of planets with orbital periods of less...
When Will We See an Ice Giant Orbiter?
With NASA announcing that its Discovery program would fund both Davinci and Veritas, two missions to Venus, it's worth pausing to consider where we are in the realm of Solar System exploration. This is not to knock the Venus decisions; this is a target that has been neglected compared to, obviously, Mars, and we've kept it on the back burner while exploring Jupiter, Saturn and, with a fast flyby, Pluto/Charon. With budgets always tight, the axe must fall, and fall it has on the promising Trident. Discovery-class involves small-scale missions that cost less than $500 million to develop. The Trident mission would have delivered imagery from Triton that upgraded the 1989 images from Voyager 2, useful indeed given the moon's active surface, and we might have learned about the presence of a subsurface ocean. I should also mention that we lost IVO when the four candidate missions were pared down to two. IVO (Io Volcano Observer) had a strong case of its own, with close flybys of the...
Juno: Close Pass by Ganymede
The Juno spacecraft swings by Ganymede today, coming within 1,038 kilometers of the largest moon of Jupiter. We have to look back over twenty years to see such a close approach to Ganymede, that one conducted by the Galileo probe in 2000. Juno seems to be one of those gifts that keeps on giving, rewarding us now with new data on Ganymede's composition, tenuous ionosphere, magnetosphere and icy surface, likely a shell over an underlying ocean. Scott Bolton (SwRI) is Juno's principal investigator: "Juno carries a suite of sensitive instruments capable of seeing Ganymede in ways never before possible. By flying so close, we will bring the exploration of Ganymede into the 21st century, both complementing future missions with our unique sensors and helping prepare for the next generation of missions to the Jovian system - NASA's Europa Clipper and ESA's [European Space Agency's] JUpiter ICy moons Explorer [JUICE] mission." Image: Left to right: The mosaic and geologic maps of Jupiter's...
The Oort Cloud and Close Stellar Encounters
If we assume that the Oort Cloud, that enveloping shroud of comets that surrounds our Solar System and extends to 100,000 AU or beyond, is a common feature of stellar systems, then it’s conceivable that objects are interchanged between the Sun and Alpha Centauri where the two clouds approach each other. That makes for the ‘slow boat to Centauri’ concept I’ve written about before, where travel between the stars essentially mines resources along the way in migrations lasting thousands of years. The resulting society would not be planet-oriented. When the Dutch astronomer Jan Hendrik Oort deduced the cloud’s existence, he theorized that there was an inner, disk-shaped component as well as an outer, spherical cloud, as shown in the image below. The outer cloud is only loosely bound to the Sun, making the interchange of cometary materials between stars a likely event over the aeons, while gravitational nudges from passing stars can dislodge comets in the other direction as well, causing...
Analyzing White Dwarf Debris Disks
You can blame H. G. Wells' The Time Machine for my interest in the Earth's far future. That swollen red Sun at the end of the novel created vivid 'end of the world' scenarios for me as a boy, and later I would learn that outer planets or moons around a G-class star might turn habitable once it became a red giant. But it would only be in the last few years that I learned how robust the investigations into white dwarf systems -- the fate of a red giant -- have become, and now we're finding out not only that such stars can retain planets, but can conceivably create new ones through an emerging disk packed with the pulverized dust of remnant materials like asteroids. Image: This artist's concept shows a white dwarf debris disk. Credit: NASA/JPL-Caltech. Jordan Steckloff (Planetary Science Institute, Tucson) has just published a short paper on the matter, looking at how white dwarf debris disks emerge. The disks seem to form only after ten to twenty million years following the end of the...
Exotic Ice on Europa?
The first thing to say about the image below is that it fills me with anticipation for the imagery that Europa Clipper will acquire when it travels to the Jovian moon later this decade (arrival in 2030, according to current planning). This is a Galileo image taken in 1996, the subject of intense study, as have been all the Europa images, ever since. How much interaction does Europa's subsurface ocean have with the icy crust? We can't say for sure how much is going on now, but images like these show how much fracturing and re-formation there has been in the past. In any event, fresh data from Europa Clipper should give us entirely new insights. Image: Enhanced image of a small region of the thin, disrupted ice crust on Jupiter's moon Europa taken in 1996 by NASA's Galileo spacecraft. Image Source: NASA. Beyond that, though, there is another story with Europa implications that is being investigated by scientists at Oak Ridge National Laboratory, an installation under the aegis of the...
Long-term Survey Analyzes Gas Giant Distribution
Back in the 1990s, when the first exoplanet detections were made, the best possible targets for radial velocity searches were what we now call 'hot Jupiters.' Radial velocity looks at the Doppler shift of light as a star moves first towards us, then away, tugged by the invisible planet. A massive Jupiter in a tight orbit tugged maximally, and quite often, because its orbit could be measured in mere days or weeks. It was purely selection effect, but it seemed that such planets were common, until we began to discover just how many other kinds of worlds were out there. Outer-system Jupiters like ours are a different problem. A gas giant in a multi-year orbit produces a radial velocity signature that is far smaller and dependent upon long analysis. Thus, early numbers on the existence of gas giants in the Jupiter or Saturn class and similarly far from their host star are just beginning to emerge as exoplanet science matures. We'll be learning more -- a lot more -- but tentative findings...
Are Planets with Continuous Surface Habitability Rare?
Put a rocky, Earth-sized planet in the habitable zone of a Sun-like star, and good things should happen. At least, that seems to be the consensus, and since there are evidently billions of such planets in the galaxy, the chances for complex life seem overwhelmingly favorable. But in today's essay, Centauri Dreams associate editor Alex Tolley looks at a new paper that questions the notion, examining the numerous issues that can affect planetary outcomes. Just how long does a planetary surface remain habitable? Alex not only weighs the paper's arguments but runs the code that author Toby Tyrrell used as he examined temperature feedbacks in his work. Read on for what may be a gut-check for astrobiological optimists. by Alex Tolley
Seafloor Volcanoes on Europa?
What’s going on on the floor of Europa’s ocean? It’s hard to imagine a place like this, crushed under the pressure of 100 kilometers or more of water, utterly dark, although I have to say that James Cambias does wonders with an ice moon ocean in his novel A Darkling Sea (Tor, 2014). Science fiction aside, Europa Clipper is in queue for a 2024 launch, and we can anticipate a flurry of new studies that feed into plans for the mission’s scientific investigations. The latest of these puts Clipper on volcano watch. The work deploys computer modeling to show that volcanic activity seems to have occurred recently on Europa’s seafloor. The concept is that there may be enough internal heat to cause melting -- at least in spots -- of the rocky interior, which would produce the needed results. How this heating affects the moon is deduced from the 3D modeling of heat production and transfer in the paper, which was recently published in Geophysical Research Letters. The lead author is Marie...
Spiral Galaxies: A Common Path to Formation?
The galaxy UGC 10738 resonates with the galaxy described yesterday -- BRI 1335-0417 -- in that it raises questions about how spiral galaxies form. In fact, the team working on UGC 10738 thinks it goes a long way toward answering them. That's because what we see here is a cross-sectional view of a galaxy much like the Milky Way, one that has both 'thick' and 'thin' disks like ours. The implication is that these structures are not the result of collisions with smaller galaxies but typical formation patterns for all spirals. Nicholas Scott and Jesse van de Sande (ASTRO 3D/University of Sydney) led the study, which used data from the European Southern Observatory's Very Large Telescope in Chile. As you can see from the image below, the galaxy, some 320 million light years away, presents itself to us edge on, offering a cross-section of its structure. Key to the work was the team's assessment of stellar metallicity, as van de Sande explains: "Using an instrument called the multi-unit...
The Most Ancient Spiral Galaxy Yet Found
My fascination with the earliest era of star and galaxy formation leads me to a new paper on an intriguing find. The authors describe the distant object BRI 1335-0417 as "an intensely star-forming galaxy," and its image as captured by the Atacama Large Millimeter/submillimeter Array (ALMA) is striking. This is a galaxy that formed a mere 1.4 billion years after the Big Bang, making it the most ancient galaxy with spiral structure ever observed. Spirals make up perhaps 70 percent of the galaxies in our catalogs, but how they form is an open question. Indeed, the proportion of spiral galaxies declines the further back in the evolution of the universe we observe. The spiral structure observed here extends 15,000 light years from the center of the galaxy (about a third the size of the Milky Way), while the total mass of stars and interstellar matter roughly equals our own galaxy. Image: ALMA image of a galaxy BRI1335-0417 in the Universe 12.4 billion years ago. ALMA detected emissions...