On the matter of city lights as technosignatures, which we looked at on Friday, I want to follow up with Thomas Beatty's work on the issue in the context of an assortment of nearby stars. Beatty (University of Arizona, Tucson) assumes Earth-like planets examined via direct-imaging by LUVOIR, a future space telescope in planning, or HabEx, a different architecture for a likewise powerful instrument. What he's done is to take data from the Soumi National Polar-orbiting Partnership satellite to find the flux from city lights and the spectra of currently available lighting. He goes on to model the spectral energy distribution from such emissions as applied to exoplanet settings at various distances. Why look at city lights in the first place? Because they're another form of technosignature that may be within the realm of detection, and we'd like to find out what's possible and what any results would imply. In particular, Beatty reminds us, the National Academies' Exoplanet Science...
Proxima Centauri b: Artificial Illumination as a Technosignature
Our recent look at the possibility of technosignatures at Alpha Centauri is now supplemented with a new study on the detectability of artificial lights on Proxima Centauri b. The planet is in the habitable zone, roughly similar in mass to the Earth, and of course, it orbits the nearest star, making it a world we can hope to learn a great deal more about as new instruments come online. The James Webb Space Telescope is certainly one of these, but the new work also points to LUVOIR (Large UV/Optical/IR Surveyor), a multi-wavelength space-based observatory with possible launch in 2035. Authors Elisa Tabor (Stanford University) and Avi Loeb (Harvard) point out that a (presumably) tidally locked planet with a permanent nightside would need artificial lighting to support a technological culture. As we saw in Brian Lacki’s presentation at Breakthrough Discuss (see Alpha Centauri and the Search for Technosignatures), coincident epochs for civilizations developing around neighboring stars are...
Exploring Ice Giant Oceans
Laboratory work on Earth is, as we saw yesterday, leading to hypotheses about how planets form and the effect of these processes on subsequent life. Whether in our own outer Solar System or orbiting other stars, planets in the 'ice giant' category, like Uranus and Neptune, remain mysterious, with Voyager 2's flybys of the latter the only missions that have gone near them. We also know that sub-Neptune planets are common, many of these doubtless sharing the characteristics of their larger namesake. Thus recent experiments probing ice giant interiors catch my eye this morning. Involving an international team of collaborators, the work looks at the interactions between water and rock that we would expect to find in the extreme conditions inside an ice giant. Planets like Uranus and Neptune are thought to house most of their mass in a deep water layer, a dense fluid overlaying a rocky core, a sharp departure from terrestrial worlds. What happens at that interface is ripe for examination....
Planet Formation Modes as a Key to Habitability
While a planet's position in the habitable zone is thought critical for the development of life like ourselves, new work out of Rice University suggests an equally significant factor in planetary growth. Working at a high-pressure laboratory at the university, Damanveer Grewal and Rajdeep Dasgupta have explored how planets capture and retain key volatiles like nitrogen, carbon and water as they form The team used nitrogen as a proxy for volatile distribution in a range of simulated protoplanets. Two processes are under study here, the first being the accretion of material in the circumstellar disk into a protoplanet, and the rate at which it proceeds. The second is differentiation, as the protoplanet separates into layers ranging from a metallic core to a silicate shell and, finally, an atmospheric envelope. The interplay between these processes is found to determine which volatiles the subsequent planet retains. Most of the nitrogen is found to escape into the atmosphere during...
Alpha Centauri and the Search for Technosignatures
Is there any chance we may one day find technosignatures around the nearest stars? If we were to detect such, on a planet, say, orbiting Alpha Centauri B, that would seem to indicate that civilizations are to be found around a high percentage of G- and K-class stars. Brian Lacki (UC-Berkeley) examined the question from all angles at the recent Breakthrough Discuss, raising some interesting issues about the implications of technosignatures, and the assumptions we bring to the search for them. We’re starting to consider a wide range of technosignatures rather than just focusing on Dysonian shells around entire stars. Other kinds of megastructure are possible, some perhaps so exotic we wouldn’t be sure how they operated or what they were for. Atmospheres could throw technosignatures by revealing industrial activity along with their potential biosignatures. We could conceivably detect power beaming directed at interstellar spacecraft or even an infrastructure within a particular stellar...
Voyager: A Persistent Clue to the Density of the Interstellar Medium
What are the long-lasting waves detected by Voyager 1? Our first working interstellar probe -- admittedly never designed for that task -- is operating beyond the heliosphere, which it exited back in 2012. A paper just published in Nature Astronomy explores what's going in interstellar space just beyond, but still affected by, the heliosphere's passage through the Local Interstellar Medium (LISM). We have a lot to learn out here, for even as we exit the heliosphere, the picture is complex. The so-called Local Bubble is a low-density region of hot plasma in the interstellar medium, the environment of radiation and matter -- gas and dust -- that exists between the stars. Within this 'bubble' exists the Local Interstellar Cloud (LIC), about 30 light years across, with a slightly higher hydrogen density flowing from the direction of Scorpius and Centaurus. The Sun seems to be within the LIC near its boundary with the G-cloud complex, where the Alpha Centauri stars reside. Image: Map of...
Interstellar Research Group: 7th Interstellar Symposium Call for Papers
Regular Acceptance: Abstracts Due June 30, 2021 The Interstellar Research Group (IRG) hereby invites participation in its 7th Interstellar Symposium, hosted by the University of Arizona to be held from Friday, September 24 through Monday, September 27, 2021, in Tucson, Arizona. The Interstellar Symposium has the following elements: The Interstellar Symposium focuses on all aspects of interstellar travel (human and robotic), including power, communications, system reliability/maintainability, psychology, crew health, anthropology, legal regimes and treaties, ethics, and propulsion with an emphasis on possible destinations (including the status of exoplanet research), life support systems, and habitats. Working Tracks are collaborative, small group discussions around a set of interdisciplinary questions on an interstellar subject with the objective of producing "roadmaps" and/or publications to encourage further developments in the respective topics. This year we will be organizing the...
A Bright Young World in the Ultraviolet
In the ranks of exoplanets we can actually see, we can include the gas giant PDS 70b, a young world orbiting the K-dwarf PDS 70. Bear in mind that of the more than 4,000 exoplanets thus far catalogued, only about 15 have been directly imaged, an indication of how tricky this work is and how far we have to go as we contemplate imaging Earth-size planets and taking spectroscopic measurements of their atmospheres. The most recent PDS 70b work was performed with the Hubble instrument, and is to my knowledge the first direct detection of an exoplanet in the ultraviolet. About 370 light years from Earth, PDS 70 (also known as V1032 Centauri) is a T Tauri star, a class of variables less than 10 million years old; this one appears to be no more than 5 million years old, and its largest planet is still in the process of building mass. The star is known to host at least two actively forming planets within its circumstellar disk of gas and dust, although only the larger is apparent in these UV...
Exoplanet Geology: A Clue to Habitability?
Because we've just looked at how a carbon cycle like Earth's may play out to allow habitability on other worlds, today's paper seems a natural segue. It involves geology and planet formation, though here we're less concerned with plate tectonics and feedback mechanisms than the composition of a planet's mantle. At the University of British Columbia - Okanagan, Brendan Dyck argues that the presence of iron is more important than a planet's location in the habitable zone in predicting habitability. We learn that planetary mantles become increasingly iron-rich with proximity to the snow-line. In the Solar System, Mercury, Earth and Mars show silicate-mantle iron content that increases with distance from the Sun. Each planet had different proportions of iron entering its core during the planet formation period. The differences between them are the result of how much of their iron is contained in the mantle versus the core, for each should have the same proportion of iron as the star they...
An Exoplanet Model for the Carbon Cycle
Earth's long-term carbon cycle is significant for life because it keeps carbon in transition, rather than allowing it to accumulate in its entirety in the atmosphere, or become completely absorbed in carbonate rocks. The feedback mechanism works over geological timescales to allow stable temperatures as CO2 cycles between Earth's mantle and the surface. As a result, we have carbon everywhere. 65,500 billion metric tons stored in rock complements the carbon found in the atmosphere and the oceans, as well as in surface features including vegetation and soil. It's a long-term cycle that can vary in the short term but be stabilizing over geological time-frames. The Sun has increased in luminosity substantially since Earth's formation, but the long-term carbon cycle is thought to be the key to maintaining temperatures on the surface suitable for life. Does it exist on other planets? It's an open question, as astronomer Mark Oosterloo (University of Groningen, The Netherlands) points out:...
TOLIMAN: Looking for Earth Mass Planets at Alpha Centauri
Why the renewed focus on astrometry when it comes to Alpha Centauri (a theme we saw as well in the previous post on ALMA observations from the surface)? One problem we face with other detection methods is simply statistical: We can study planets, as via the Kepler mission, by their transits, but if we want to know about specific stars that are near us, we can’t assume a lucky alignment. Radial velocity requires no transits, but has yet to be pushed to the level of detecting Earth-mass planets at habitable-zone distances from stars like our own. This is why imaging is now very much in the mix, as is astrometry, and getting the latter into space in a dedicated mission has occupied a team at the University of Sydney led by Peter Tuthill for a number of years -- I remember hearing Tuthill describe the technology at Breakthrough Discuss in 2016. Out of this effort we get a concept called TOLIMAN, a space telescope that draws its title from Alpha Centauri B, whose medieval name in Arabic,...
Closing in on Centauri A and B with Astrometry
When it comes to finding planets around Centauri A and B, the method that most intrigues me is astrometry. At the recent Breakthrough Discuss sessions, Rachel Akeson (Caltech/IPAC) made the case for using the technique with data from the Atacama Large Millimeter Array (ALMA). My interest is piqued by the fact that so few of the more than 4300 known exoplanets have been discovered using astrometry, although astronomers were able in 2002 to characterize the previously known Gliese 876 using the method. Before that, numerous reported detections of planets around other stars, some going back to the 18th Century, have proven to be incorrect. But we’re entering a new era. ESA’s Gaia mission, launched in 2013, is likely to return a large horde of planets using astrometry as it creates a three-dimensional map of star movement in the Milky Way. Dr. Akeson’s case for using ALMA to make detections on the ground is robust, despite the challenges the method presents. She points out that if we...
Imaging an Alpha Centauri Planet
At some point, and probably soon, we're going to be able to identify planets around Alpha Centauri A and B, assuming they are there and of a size sufficient for our methods. We may even be able to image one. Already we have an extremely tentative candidate around Alpha Centauri A -- I hesitate even to call it a candidate, because this work is so preliminary -- which could be a 'warm Neptune' at about 1 AU. One of the pleasures of the recent Breakthrough Discuss meeting was to hear film director James Cameron on the matter. Cameron, after all, gave us Avatar, where a habitable moon around a gas giant in this system plays the key role. Despite his frequent protestations that he is not a scientist, Cameron was compelling. He's obviously well-enough versed in the science to know the terminology and the issues involved in the ongoing deep dive into the Alpha Centauri system, and he's done wonders in fixing the public's attention not only on its possibilities but also on presenting a...
Proxima Flare Captured at Multiple Wavelengths
I've been wanting to explore some of the observing campaigns for the Alpha Centauri system -- their approach, design and early results -- and we'll start that early next week. But let's home in first on an event within that system, a flare from Proxima Centauri that is fully 100 times more powerful than any flare ever detected from our own star. That Proxima was capable of major flares was already known in 2018 when, according to data from the Atacama Large Millimeter Array (ALMA), an earlier flare at millimeter wavelengths (233 GHz) was detected. It was an interesting moment, captured in a paper on the work in Astrophysical Journal Letters (citation below). Lead author Meredith MacGregor, an assistant professor at the Center for Astrophysics and Space Astronomy (CASA) and Department of Astrophysical and Planetary Sciences (APS) at the University of Colorado Boulder, also found it provocative. "We had never seen an M dwarf flare at millimeter wavelengths before 2018, so it was not...
A Drake Equation for Alien Artifacts
Jim Benford's study of 'lurkers' -- possibly ancient probes that may have been placed here by extraterrestrial civilizations to monitor our planet's development -- breaks into two parts. The first, published Friday, considered stars passing near our Sun in the lifetime of the Solar System. Today Dr. Benford looks at the Drake Equation and sets about modifying it to include the lurker possibility. Along the way, he develops a quantitative way to compare conventional SETI with the strategy called SETA -- the search for extraterrestrial artifacts. Both articles draw on recently published work, the first in JBIS, the second in Astrobiology. The potential of SETA and the areas it offers advantages over traditional SETI argue for close observation of a number of targets close to home. by James Benford Introduction “To think in a disciplined way about what we may now be able to observe astronomically is a serious form of science.” –Freeman Dyson I propose a version of the Drake Equation for...
Is ET Lurking in Our Cosmic Backyard?
Jim Benford is continuing his research into the still nascent field known as SETA, the Search for Extraterrestrial Artifacts. A plasma physicist and CEO of Microwave Sciences, as well as a frequent Centauri Dreams contributor, Benford became intrigued with recent discoveries about Earth co-orbital objects -- there is even a known Earth Trojan -- and their possibilities in a SETI context. If we accept the possibility that an extraterrestrial civilization may at some point in Earth’s 4.5 billion year history have visited the Solar System, where might we find evidence of it? Two papers grew out of this, one in Astrobiology, the other in the Journal of the British Interplanetary Society (citations below). In the first of two posts here, Jim explains where his work has led him and goes through the thinking behind these recent contributions. by James Benford Part 1: How Many Alien Probes Could Have Come From Stars Passing By Earth? 1. Searching for Extraterrestrial Artifacts Alien...
Biosignatures: The Oxygen Question
Just how useful is oxygen as a biosignature? It’s a question we’ve examined before, always with the cautionary note that there are non-biological mechanisms for producing oxygen which could make any detected biosignature ambiguous. But let’s go deeper into this, thanks to a new paper on ‘oxygen false positives’ out of the University of California at Santa Cruz. The paper, produced by lead author Joshua Krissansen-Totton and team, offers scenarios that can place an oxygen detection in the broader context that would distinguish any such find as biological. Let’s begin with the fact that in addition to its obvious interest because of Earth’s history, photosynthesis involving oxygen requires the likely ubiquitous carbon dioxide and water we would expect on habitable zone planets. Helpfully, oxygen should be readily detectable on exoplanets because of its absorption features, which are prominent not only in visible light but in the near infrared and thermal infrared, if we include ozone....
Breakthrough Discuss Concluding Today
Breakthrough Discuss 2021 wraps up today, with presentations on mission concepts to Alpha Centauri, lightsail technologies and fusion propulsion. Of particular interest to me, in light of the magnitude of the problem as it affects the Breakthrough Starshot idea, is a session on the current state of deep space optical communications. This has been a lively and robust meeting -- James Cameron's appearance was particularly engaging, as was the Yuri's Night panel discussion -- and the public is invited to watch again today at https://www.youtube.com/breakthroughprize. Gathering my notes is going to be time-consuming, but many of these presentations will make their way into upcoming discussions on Centauri Dreams. In light of the wide-ranging discussion on the Centauri stars and the challenge they present, it seems appropriate to introduce a quote I just ran into from Alan Lightman's new book Probable Impossibilities (Pantheon, 2021). This is from a section talking about quantum...
Breakthrough Discuss Ongoing
There is a public YouTube channel for watching the Breakthrough Discuss meetings, which began today and extend through tomorrow. Click here to go to sessions on "The Alpha Centauri System: A Beckoning Neighbor." I'll have thoughts on some of these presentations in coming weeks.
Dustfall: Earth’s Encounter with Micrometeorites
Interesting news out of CNRS (the French National Center for Scientific Research) renews our attention to the mechanisms for supplying the early Earth with water and carbonaceous molecules. We've looked at comets as possible water sources for a world forming well inside the snow line, and asteroids as well. What the CNRS work reminds us is that micrometeorites also play a role. In fact, according to the paper just out in Earth and Planetary Science Letters, 5,200 tons of extraterrestrial materials -- dust particles from space -- reach the ground yearly. Image: From the paper's Figure 1, although not the complete figure. The relevant part of the caption: Fig. 1. Left: Location of the CONCORDIA station (Dome C, Antarctica). Centre: View of a trench at Dome C. Credit: Rojas et al. This conclusion comes from a study spanning almost twenty years, conducted by scientists in an international collaboration involving laboratories in France, the United States and the United Kingdom. CNRS...