Far Ultraviolet Flares an Issue for M-dwarf Planets

SPARCS is the name of a CubeSat-based space mission out of Arizona State University, the acronym standing for Star-Planet Activity Research CubeSat, with astronomer Evgenya Shkolnik as principal investigator. The idea here is to look at ultraviolet flare activity on M-dwarf stars, a wavelength about which we could do with a great deal more information. The plan is to target specific stars that will be observed continuously over at least one complete stellar rotation, which could be anything from five to forty-five days. That this is a good idea is borne out by what we are learning about GJ 887, also known as Lacaille 9352 and known to be orbited by at least two planets. Located in the southern constellation of Piscis Austrinus, the star has the fourth highest known proper motion, with parallax measurements indicating it is a bit less than 11 light years from the Sun. It is one of the brightest M-dwarfs in our sky. When TESS (Transiting Exoplanet Survey Satellite) fixed its gaze on GJ...

read more

Evidence for a Shift of Europa’s Icy Crust

A hypothesis about an astronomical object snaps into sharper detail when it can be tested. Thus the new findings on Europa and the movements of the ice shell that covers its ocean, which are the subject of a paper in Geophysical Research Letters. The work of Paul Schenk (Lunar and Planetary Institute, Houston) and colleagues, the paper argues that the shell has rotated by about 70 degrees during the last several million years. Clearly, such movement can only happen with a shell floating freely over a liquid ocean beneath, and Europa Clipper should be able to tell us more. Remember, we are talking about a geologically young surface on this Jovian moon, as indicated by, among other things, the relative smoothness of the terrain and the paucity of impact craters. All that is consistent with ice in motion in one way or another. Schenk's team homes in on large global-scale circular patterns that can be made out by reference to Galileo and Voyager data, previously identified features that...

read more

Aspects of Interstellar Transhumanism

In Shakespeare's famous lines from The Tempest, the spirit Ariel addresses Ferdinand, prince of Naples, now grieving over the death of his father in the shipwreck that has brought them to a remote island in an earlier era of exploration. The lines have an eerie punch given our discussion of the changes humanity may bring upon itself as we adapt to deep space: Full fathom five thy father lies; Of his bones are coral made; Those are pearls that were his eyes; Nothing of him that doth fade, But doth suffer a sea-change Into something rich and strange... From this has emerged the modern shadings on 'sea-change,' yet another Shakespearean coinage that has enriched the language. I thought about The Tempest while reading through the Working Track Report from TVIW 2016, a symposium in which these adaptations took center stage. The new edition of Stellaris: People of the Stars (Baen, 2020), discussed last Friday, contains the short report, prompting this examination of its conclusions along...

read more

Homo Stellaris: Space and Human Transformation

In the sixteen years I've been writing Centauri Dreams, I've often used written science fiction to illustrate points about our ongoing science discussions. This also gives me a chance to poke around in my collection of old SF magazines, always a pleasure, as I've been collecting them since i was a boy and they go back to the glory days of newsstand fiction, which extended well beyond SF to mysteries, westerns and the various other genres defined by the pulp magazines of the early 20th Century. What a kick, then, to read a short story by Robert E. Hampson and find a starship named Centauri Dreams! Not only that, but Robert, a professor of physiology and pharmacology at Wake Forest School of Medicine, gives me a nod by naming the orbital hub through which travelers pass in the story 'Gilster Station.' Thank you, Robert! The story is "Those Left Behind," which appears in the collection Stellaris: People of the Stars, a volume Hampson edited with Les Johnson. First published in 2019, the...

read more

Ganymede: Largest Impact Crater in the Solar System?

Have a look at what two of our older spacecraft saw on Jupiter's giant moon Ganymede, a world that will snap into much greater focus once the JUICE mission arrives in 2029. The JUpiter ICy moons Explorer is slated for launch in 2022, with the intention of studying Ganymede, Callisto and Europa. But it's Ganymede that will get the lion's share of the attention from this European Space Agency effort as JUICE slides into orbit around the moon in 2032, marking the first time a spacecraft has orbited a moon circling a planet other than our own. Image: Images of Ganymede's surface taken by Voyager 2 (left) and Galileo (right). The Dark Terrain and Bright Terrain areas can be recognized, with concurrent furrows present in the Dark Terrains. Credit: NASA. We looked at more recent Juno views of Ganymede just last month (see Glimpses of Ganymede), along with interesting results from its most recent flyby on disruptions in the crystalline structure of the moon's north polar ice due to incoming...

read more

95 Nearby Cool Brown Dwarfs Identified

The boundary between planet and star is hard enough to pin down without thinking of some recently discovered brown dwarfs that are cool enough to approach Earth temperatures. Yet worlds/stars like these are among the haul assembled by volunteers working data for Backyard Worlds: Planet 9, a citizen science project whose latest findings include 95 cool brown dwarfs in the Sun's neighborhood, as reported in the Astrophysical Journal. Despite a determined search, we've yet to find such an object closer than the nearest stars at Alpha Centauri. But 23 light years out -- the distance of the closest of these brown dwarfs -- is definitely close in galactic terms, and most of the brown dwarfs tracked in the new work are between 30 and 60 light years from Earth. That makes sense, for objects like these are faint enough that identifying them at greater range is all but impossible. The data used in the brown dwarf collection come from a range of observatories including W. M. Keck, Mont...

read more

‘Oumuamua: A Hydrogen Iceberg?

Studies of interstellar interloper ‘Oumuamua move at lightning pace, to judge from a recent exchange on hydrogen ice. A study by Greg Laughlin and Darryl Seligman (both at Yale) just published in June, has now met a response from Thiem Hoang (Korea University of Science and Technology, Daejeon) and Harvard’s Avi Loeb. The issue is significant because if, as Laughlin and Seligman argued, ‘Oumuamua were made of hydrogen ice, then the outgassing that drove its slight acceleration would not have been detectable. At least one mystery solved. Or was it? One reason the 0.2km radius object didn’t fit the description of a comet was that there was no explanation for its tiny change in velocity. Hoang and Loeb have examined the hydrogen ice concept and found it wanting. Says Hoang: "The proposal by Seligman and Laughlin appeared promising because it might explain the extreme elongated shape of ‘Oumuamua as well as the non-gravitational acceleration. However, their theory is based on an...

read more

A Fast Inflatable Sail Using Desorption

The first laboratory work on pushing a space sail with microwaves was performed by Jim and Greg Benford at the Jet Propulsion Laboratory back in 1999, with the results presented the following year at a European conference. Leik Myrabo (then at Rensselaer Polytechnic Institute) was, at about the same time, performing experiments with lasers at Wright-Patterson Air Force Base in Ohio. When you think about the problems of laboratory work on these matters, consider the fact of gravity, meaning that you are working in a 1 g gravity well with diaphanous materials whose acceleration depends on how hot you can allow them to become. Advances in materials and in particular in lightweight carbon structures allowed the Benfords' experiments to succeed, with the help of a 10-kilowatt microwave beam that produced significant acceleration on the test object. But I'm reminded by looking at a new paper on sail technologies using no beam at all that the Benfords also demonstrated something else....

read more

Across the ‘Jupiter Gap’

A great part of the excitement of scientific discovery is not knowing what will emerge when you take data. Our space missions have proven that time and again, and I have no doubt that as we tighten the resolution on future telescopes, we’ll find things that defy many an accepted theory. NASA’s Stardust mission reflects the phenomenon. Designed as a comet sample return, Stardust is now providing information about the migration of materials in the primordial Solar System, which may point toward a phenomenon more widespread than earlier believed. Thus the work of Devin Schrader and Jemma Davidson (University of Arizona Center for Meteorite Studies). Working with colleagues at the Smithsonian Institution’s National Museum of Natural History, the University of Hawai?i at M?noa, Washington University in St. Louis, and Harvard University, the duo have produced evidence that at least fragmentary materials in the inner Solar System crossed what is often called the ‘Jupiter Gap’ and moved much...

read more

Ceres: The Lesson of Occator Crater

We learned some time ago from the Dawn mission just how interesting a place Ceres is. If you're wanting to dig into the latest research on the dwarf planet, as it is now termed, be aware that a collection of papers has appeared in Nature Astronomy, Nature Geoscience and Nature Communications, all published on August 10. These analyze data gathered during Dawn's second extended mission (XM2) phase, which closed with a series of low orbits as close as 35 kilometers from the surface. Rather than listing these papers separately, I'll just offer this link to the entire collection at nature.com. The upshot is that we're continuing to learn about a small world that remains surprisingly active. Let's home in on cryovolcanism, which leverages the temperature differential between a frozen world's interior water and its frigid surface to produce ejections. These are becoming almost common -- think Enceladus, for example, and then remember what Voyager saw at Triton. The thinking has been that...

read more

Lunar Eclipse: A Proxy for Exoplanet Observation

When it comes to detecting life on planets around other stars, my guess is that what will initially appear to be a life signature will quickly become controversial. We might, for example, find ozone in an exoplanet atmosphere with a space telescope like HabEX (Habitable Exoplanet Observatory). That would lead to hyperbolic news stories, to be sure, but ozone can happen when nitrogen and oxygen are exposed to ultraviolet light. The presence of ozone makes no definitive statement about life. In fact, definitive statements about life may take more than a few decades to achieve. If ozone seems like a good catch, that's because it implies oxygen, which makes us think of photosynthesis, but oxygen itself is hardly infallible as a biosignature. Oxygen-rich atmospheres can be completely abiotic, with UV from the host star breaking down carbon dioxide. For that matter, an atmosphere rich in water vapor can produce oxygen and hydrogen through the effects of UV radiation. Better, then, to look...

read more

A Dense Sub-Neptune Challenges Formation Theories

The exoplanet K2-25b, a young world in the Hyades cluster orbiting an M-dwarf star, raises intriguing questions. We’d like to know how it formed, for K2-25b is much more dense than we would expect for a world slightly smaller than Neptune. Planets in a range between Earth and Neptune seem to be common around other stars, although we have none in our Solar System unless we make an interesting discovery about putative Planet 9. But let lead author Gudmundur Stefánsson (Princeton University) point out the unusual nature of K2-25b:: “The planet is dense for its size and age, in contrast to other young, sub-Neptune-sized planets that orbit close to their host star. Usually these worlds are observed to have low densities — and some even have extended evaporating atmospheres. K2-25b, with the measurements in hand, seems to have a dense core, either rocky or water-rich, with a thin envelope.” Image: New detailed observations with NSF’s NOIRLab facilities reveal a young exoplanet, orbiting a...

read more

Saturn-class Exoplanet Is a Win for Astrometry

Under other circumstances, the red dwarf TVLM 513-46546 would not cause a ripple in news coverage of exoplanets. What astronomers have found there is a planet of Saturn mass in a 221 day orbit, raising eyebrows only in that while planets are common around M-dwarfs, they are usually smaller, rocky worlds. But the TVLM 513-46546 story gains weight when we consider the methods used to find this planet, which have implications for studying system architectures around many stars as we refine our techniques and new instruments come online. The star in question is 35 light years from Earth, and we've found the planet through astrometry, a method that tracks a star's position in the sky to an extreme precision and detects the minute variation in motion caused by the gravitational effect of the planet. If this sounds a bit like radial velocity methods, the difference is that with astrometry we are measuring tiny changes in the stars position in the sky, as opposed to the Doppler shift of...

read more

A Tight Fit: Planets in the Habitable Zone

How many habitable planets should we expect in the average stellar system? One sounds like a good number to me, even an optimistic one. But it’s a tough question because we don’t exactly know what an ‘average’ stellar system is, there being such a wide range currently being discovered. There was a time less than a century ago when the idea that there might be three habitable planets -- i.e., habitable by humans -- in the Solar System was current. Imagine Venus as something like French Polynesia, or maybe what was then the Belgian Congo. Imagine Mars with a thicker atmosphere and ancient seas, Edgar Rice Burroughs territory. Today we think of multiple habitability here in the Solar System as perhaps including ocean life under the ice of the moons of giant planets, but we’ve ruled out anything a human could walk around on in relative comfort. The question of what makes our Solar System able to support just one planet in the human habitability range bothered Stephen Kane (UC-Riverside)...

read more

The People’s Space Odyssey: 2010: The Year We Make Contact

I've never known anyone as passionate about science fiction movies as Larry Klaes. His features on films ranging from The Thing from Another World to 2014's Interstellar have proven hugely popular. Today Larry looks at Peter Hyams' 2010: The Year We Make Contact, a film with (and this is putting it mildly) big shoes to fill. How did 2010 measure up to its illustrious predecessor, and what choices did Hyams make that confirmed -- or contradicted -- Stanley Kubrick's vision in 2001: A Space Odyssey? Have a look at what Larry considers a flawed but nonetheless valuable take on Arthur C. Clarke's angle on the cosmos, complete with numerous pointers to online nuggets that fill out the story of the film's production. by Larry Klaes When the science fiction film 2001: A Space Odyssey premiered in theaters in early April of 1968, it created a stir with cinema-goers and critics which has seldom been seen before or since. An experimental art film with an unheard-of budget for its day – 10.5...

read more

The Path toward an Aerographite Sail

I’ve focused on aerographite these past several days because sail materials are a significant determinant of the kind of missions we can fly both in the near-term and beyond. The emergence of a new ‘contender’ to join graphene as a leading candidate for deep space missions is worthy of note. Whether or not this ultra lightweight material produced by teams at the Technical University of Hamburg and the University of Kiel lives up to its promise will depend upon a thorough investigation of its properties as adapted for sails, one which has already begun. Sail materials matter because we have already begun flying spacecraft with these technologies, so that as we climb the learning curve in terms of design and engineering, we need to be thinking about how to increase performance to allow ambitious missions, and perhaps even audacious ones like Breakthrough Starshot, though the authors of the first paper on aerographite for sails are skeptical about whether the material could withstand...

read more

Solar Sails: Deeper into the Aerographite Option

Aerographite is an ultra lightweight material made of carbon microtubes, just the sort of thing that seizes the imagination in terms of material for space sails powered by solar photons or laser beam. Such materials are much in my thinking these days and have been for some time, ever since I first read some of Robert Forward’s papers on using laser beaming to boost enormous sails to a substantial fraction of lightspeed. What kind of materials would be used, and how could the mass be kept low enough to allow significant payloads to be deployed? These days, we think in terms of much smaller sails with miniaturized payloads of the sort advocated by Breakthrough Starshot. But of course advances in sail technology enable a wide range of concepts, and the place to start is with laboratory experiment -- this is where we are with aerographite right now -- moving into space demonstrators that can be low-cost and near-term. The kinds of missions conceivable with aerographite include fast...

read more

Aerographite: An Advance in Sail Materials with Deep Space Implications

Invented at the Technical University of Hamburg and developed with the aid of researchers at the University of Kiel, a new material called aerographite offers striking prospects for solar sail missions within the Solar System as well as interstellar precursor implications. Judging from the calculations in a just published paper in Astronomy & Astrophysics, aerographite conceivably enables a mission to Proxima Centauri with a flight time of less than two centuries. We are not talking about laser-driven missions here, but rather meter-scale craft that would be pushed to interstellar velocities by solar radiation; i.e., true solar sails. But let’s focus near-term before going interstellar. I’ve been talking to René Heller (Max Planck Institute for Solar System Research, Göttingen) about the paper, along with co-authors Guillem Anglada-Escudé (Institut de Ciencies Espacials, Barcelona), Michael Hippke (Sonneberg Observatory, Germany) and Pierre Kervella (Observatoire de Paris). Just what...

read more

Glimpses of Ganymede

Have a look at Ganymede as seen by the Juno spacecraft on December 26, 2019, the day after Christmas (and a day and time that now seems impossibly distant given all that has been going on closer to home). Jupiter's largest moon is also the largest satellite in the Solar System, bigger even than Titan, and 26% larger than the planet Mercury, though far less massive. Our view comes courtesy of Juno's Jovian Infrared Auroral Mapper (JIRAM) instrument. Image: These images were taken by the JIRAM instrument aboard NASA's Juno spacecraft on Dec. 26, 2019, providing the first infrared mapping of Ganymede's northern frontier. Frozen water molecules detected at both poles have no appreciable order to their arrangement and a different infrared signature than ice at the equator. Credit: NASA/JPL-Caltech/SwRI/ASI/INAF/JIRAM. Three-quarters the size of Mars, Ganymede began turning up in science fiction early in that genre's development, as in Stanley Weinbaum's "Tidal Moon," which ran in the...

read more

A Directly Imaged Multi-Planet System around a Sun-like Star

At this point in the exoplanet hunt, actual images of our quarry are uncommon, but few more so than today's image, made with the European Southern Observatory's Very Large Telescope. This is being billed as the first image ever taken of a young Sun-like star accompanied by multiple planets, in this case two gas giants. And I do mean young: At 17 million years old, this star has spawned planets recently enough that their hot glow makes the image possible. Image: First ever image of a multi-planet system around a Sun-like star. The arrows point to the planets; the other bright objects are background stars. Credit: European Southern Observatory. Designated TYC 8998-760-1, the host star is some 300 light years away in the southern constellation of Musca (The Fly), with a mass close to that of the Sun, described in the paper on this work as a solar analogue. The two gas giants orbit the star at 160 and 320 AU, and both are more massive than our Jupiter and Saturn, with the inner planet at...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives