It was hard enough to find ‘Oumuamua, the first object on an interstellar trajectory discovered within our own Solar System. The emergence of new resources like the Large Synoptic Survey Telescope (LSST) should help us develop a preliminary catalog of such interlopers, thought to be not uncommon if we can identify them. But tracking down objects that wandered from one star to another and found their way into residence in our system is another matter entirely. In April we looked at a study of an unusual set of Centaurs, asteroids whose orbit perpendicular to the orbital plane of the planets and other asteroids raises questions about their origin. A letter to Monthly Notices of the Royal Astronomical Society had appeared, written by Fathi Namouni (Observatoire de la Côte d’Azur, France) and Maria Helena Moreira Morais (Universidade Estadual Paulista, Brazil). The scientists identified what seems to be a population of asteroids that were probably drawn into the Sun’s gravitational pull...
The Cathedral and the Starship: Learning from the Middle Ages for Future Long-Duration Projects
It doesn’t take much to awaken my internal medievalist. On this score, Andreas Hein’s latest is made to order, looking at European cathedrals, long-term projects and starships. Is there an analogy that impacts long-term thinking here, or is the comparison too strained to be useful? Andreas is the Executive Director and Director Technical Programs of the UK-based not-for-profit Initiative for Interstellar Studies (i4is), where he is coordinating and contributing to research on diverse topics such as missions to interstellar objects, laser sail probes, self-replicating spacecraft, and world ships. He is also an assistant professor of systems engineering at CentraleSupélec – Université Paris-Saclay. Dr. Hein obtained his Bachelor’s and Master’s degree in aerospace engineering from the Technical University of Munich and conducted his PhD research on heritage technologies in space programs there and at MIT. He is an INCOSE member, a Fellow of the British Interplanetary Society, and a...
Planetary Collisions and their Consequences
What happens when worlds collide? The question recalls the novel by Philip Wylie and Edwin Balmer, which appeared as a serial in Blue Book magazine beginning in 1932 and concluded the following year. The book version of When Worlds Collide appeared in 1933, and the movie, directed by Rudolph Maté, came out in 1951 in a George Pal production. I would wager that most Centauri Dreams readers have seen it. Let's hope we never share such a fate, but it's likely that collisions are commonplace in the late stages of planet formation, and many researchers believe that Earth's Moon was the result of the collision of our planet with a Mars-sized planet about 4.5 billion years ago. Scientists at Durham University and the University of Glasgow have recently developed computer simulations tracking atmosphere loss during such collisions using the COSMA supercomputer, which is part of the DiRAC High-Performance Computing facility in Durham. The work involves smoothed particle hydrodynamics...
SPOCK: Modeling Orbital Scenarios around Other Stars
In addition to being a rather well-known character on television, SPOCK also stands for something else, a software model its creators label Stability of Planetary Orbital Configurations Klassifier. SPOCK is handy computer code indeed, determining the long-term stability of planetary configurations at a pace some 100,000 times faster than any previous method. Thus machine learning continues to set a fast pace in assisting our research into exoplanets. At the heart of the process is the need to figure out how planetary systems are organized. After all, after the initial carnage of early impacts, migration and possible ejection from a stellar system, a planet generally settles into an orbital configuration that will keep it stable for billions of years. SPOCK is all about quickly screening out those configurations that might lead to collisions, which means working out the motions of multiple interacting planets over vast timeframes. To say this is computationally demanding is to greatly...
Two Unusual Brown Dwarfs
I track brown dwarfs closely because they have so much to teach us about the boundary between planet and star. I’m also intrigued by what might be found on a planet orbiting one of these objects, though life seems unlikely. Brown dwarfs begin losing their thermal energy after formation and continue cooling the rest of their lives, a period I’ve seen estimated at only about 10 million years. We know nothing about how long abiogenesis takes -- not to mention how common it is -- but the outlook for brown dwarf planets and astrobiology seems bleak. It’s intriguing, though, that we’ve identified a number of brown dwarfs with planetary systems, including 2M1207b, MOA-2007-BLG-192Lb, and 2MASS J044144b, and in the latest news from the NEOWISE mission, we have two brown dwarfs that stand out for other reasons. What used to be the Wide-Field Infrared Survey Explorer would become a tool for the detection of near-Earth objects, but data from the earlier WISE incarnation is still turning up red...
What Can SETI Scholars Learn from the Covid-19 Pandemic?
The pandemic has everyone's attention, but it's not too early to ask what lessons might be learned from public response to it. In particular, are there nuggets of insight here into what might occur with another sudden and startling event, the reception of a signal from another civilization? John Traphagan takes a look at the question in today's essay. Dr. Traphagan is a social anthropologist and Professor of Religious Studies, in the Program in Human Dimensions of Organizations, and Mitsubishi Fellow at the University of Texas at Austin. He also holds a visiting professorship at Waseda University in Tokyo, as well as being a board member of SSoCIA, the Society for Social and Conceptual Issues in Astrobiology. His research focuses on the relationship between science and culture and falls into two streams: life in rural Japan and the culture and ethics of space exploration. John has published numerous scientific papers and several books, including Science, Culture, and the Search for...
Spin-Orbit Alignment: A Lesson from Beta Pictoris?
I hadn’t planned to write about the recent work out of the University of Exeter on Beta Pictoris, but yesterday’s article on KELT-9b dealt with planetary alignment, given that the planet shows marked spin-orbit misalignment. At Beta Pictoris, an international team of researchers led by Exeter’s Stefan Kraus has carried out measurements of the spin-orbit alignment of Beta Pictoris b, a gas giant orbiting a young star in an orbit about as distant as Saturn from the Sun. Here we have the first spin-orbit alignment measurement of a directly imaged planetary system. How such alignments occur is clearly relevant to planet formation theories. There’s a bit of astronomy history here, for spin-orbit issues became significant for both Immanuel Kant (1724-1804) and Pierre-Simon Laplace (1749-1827), who looked at spin-orbit alignment in our own Solar System. It was apparent to both that the planets known to them orbited the Sun not only in alignment with each other but in alignment with the...
Building the Psyche Asteroid Explorer
If all goes well (an often perilous assumption, as JWST so frequently reminds us), NASA's Psyche mission to the intriguing asteroid of the same name will lift off in about two years. We're now moving out of the design and planning stage into manufacturing the spacecraft hardware, this following a period of testing on the core engineering models that will deliver the spacecraft to its target in the main asteroid belt. The critical design review, a shakeout of the three science instruments and engineering subsystems, has just been passed with flying colors. Principal investigator Lindy Elkins-Tanton (Arizona State University) calls the process "one of the most intense reviews a mission goes through in its entire life cycle." True enough, as everything from telecommunications, power and propulsion must pass the test, not to mention the flight avionics and computing systems. We're a long way past the digital blueprint stage, having followed it up with prototypes and engineering models of...
KELT-9b: ‘Gravity Darkening’ and an Asymmetric Light Curve
Perhaps the hottest planet ever discovered spotlights yet another way to interpret light curves produced by transiting worlds. KELT-9b comes out of data gathered by the KELT transit survey, the acronym standing for Kilodegree Extremely Little Telescope. KELT consists of two robotic telescopes, one at Winer Observatory in southeastern Arizona, the other at the South African Astronomical Observatory in Sutherland, South Africa. The planet orbits an A-class star in Cygnus about 670 light years away and turned up in the KELT data in 2017. We’ve learned a lot more about KELT-9b thanks to the TESS mission, allowing us to understand just how unusual this planet is. 2.9 times as massive as Jupiter, the world orbits its star in 36 hours, receiving 44,000 times the energy from its host that Earth receives from the Sun. Reaching 4,300 degrees Celsius, this is a tidally locked planet whose dayside is hotter than the surfaces of some stars. Its orbital path takes it almost directly above both the...
A SETI Reality Check
Given how much we do not know about everything from abiogenesis to the lifetime of technological civilizations, what can we say about SETI's chances for success? Henry Cordova, a Centauri Dreams regular, is a long-time SETI enthusiast who has nonetheless been revising his thinking on the discipline's prospects. Our one useful sample, Earth, tells us how long it took for life just to become multi-cellular, much less to reach the tiny window opened by our technological society. And need we assume that intelligence will inevitably arise even with complex biology to support it? A retired geographer and mapmaker currently living in southeast Florida, Henry served in the US Navy and was originally trained as an astronomer and mathematician. Amateur astronomy, celestial navigation and collecting star atlases occupy his time when he's not pondering questions like how civilization might arise without technology, or whether Dysonian strategies -- looking not for beacons but evidence in the...
Tracking a Jovian Outbreak
Another win for amateur astronomers. Have a look at a Juno image showing the familiar Great Red Spot (upper left) and a new, bright spot just emerging in the center of the image, an oval-shaped feature that was not present in images taken not long before by astronomers in Australia. We're looking at a plume erupting into the upper layers of the atmosphere, a convective outbreak in a region known as the South Temperate Belt, a latitude where outbreaks are not uncommon. Image: Juno's view of the swath of Jupiter visible from its recent flyby. Credit: NASA/JPL-Caltech/SwRI/MSSS. Image processing by Kevin M. Gill. The Juno image, taken on June 2, 2020, is fortuitous, because it was just two days before that South African amateur Clyde Foster (who is director of the Shallow Sky section of the Astronomical Society of Southern Africa) discovered the new spot while working with a filter sensitive to wavelengths where there is strong methane absorption in Jupiter's atmosphere. Juno happened...
An Exposed Planetary Core at TOI-849
In exoplanet research, 'deserts' are regions where things are not found. Thus the Neptunian Desert, which is a zone close to a star where planets of Neptune size only rarely appear. Deserts like this (there is also a Brown Dwarf Desert that we've examined in earlier posts) raise questions because we don't know why they occur. What is it we don't understand about planet formation that accounts for the lack of Neptune-mass planets in 2-4 day orbits? Exceptions tweak our thinking, and do have NGTS-4b, a world 20 percent smaller than Neptune and 20 times as massive as Earth in a 1.3-day orbit around a K-dwarf (see Into the Neptunian Desert for more on this one, which is now joined by an even more puzzling object). For today we learn of the discovery of a world of roughly Neptune's mass with an orbital period of a scant 18 hours, and researchers reporting the discovery in Nature suggest that we are actually looking at a 'failed' gas giant, an exposed planetary core. We can thank TESS...
Two Planets Around Nearby Gliese 887
Red dwarf stars have fascinated me for decades, ever since I learned that a potentially habitable planet around one might well be tidally locked. Trying to imagine a living world with a sun that didn’t move in the sky was the kind of exercise that I love about science fiction, where playing with ideas always includes a vivid visual element. What kind of landscapes would a place like this offer to the view? What kind of weather would tidal lock conjure? Stephen Baxter’s novel Proxima (Ace, 2014) is a wonderful exercise in such world-building. Thus my continuing interest in the splendid work being done by RedDots, which takes as its charter the detection of terrestrial planets orbiting red dwarfs near the Sun. You’ll recall that this is the team that discovered Proxima Centauri b, a star under increased scrutiny of late as other potential planetary signals are examined. RedDots also gave us Barnard’s Star b and has found three planets around the red dwarf GJ 1061. Now we learn about a...
A 20th Anniversary Review of Ward and Brownlee’s ‘Rare Earth’
Ramses Ramirez, whose work on what he calls the Complex Life Habitable Zone was the subject of a recent Alex Tolley essay (see Are Classic Habitable Zones Too Wide for Complex Life?), joins us today with a look back at Rare Earth on the occasion of the book's 20th anniversary. Written by Peter Ward and Donald Brownlee, Rare Earth examined a wide range of factors that argued against the ubiquity of complex life in the cosmos. I remember well when it came out, as I was in the midst of writing my Centauri Dreams book for Copernicus, Ward and Brownlee's publisher, and my editor (the brilliant Paul Farrell) and I had to wrestle with the question of whether Rare Earth rendered the search for intelligent life elsewhere irrelevant. Fortunately, we plunged ahead anyway. As Dr. Ramirez shows this morning, many of the factors put forward by Ward and Brownlee can be re-examined with new data as work on exoplanets continues. Ramses is a research scientist at the Earth-Life Science Institute...
A Suggestive Model for Europa’s Ocean
What we learn about Europa may resonate with other moons in the Solar System, making the study of this 'ocean world' even more valuable as we look elsewhere among the gas giants. I notice this morning that a team of researchers from the Jet Propulsion Laboratory has presented results on Europa at the Goldschmidt conference, held virtually from the 21st to 26th of this month. The work models geochemical reservoirs within Europa, analyzing the composition and properties of the core, a layer of silicates, and the ocean itself. In the absence of hard data, models will have to do, and here we learn that a plausible composition for the Europan ocean can be advanced, one that postulates the breakdown of water-bearing minerals and the release of the trapped water. Mohit Melwani Daswani is lead researcher: "We find that different minerals lose water and volatiles at different depths and temperatures. We added up these volatiles that are estimated to have been lost from the interior, and found...
A Catalog of Celestial Exotica
Harmonizing with yesterday's post about a NASA grant to study technosignatures is word from Breakthrough Listen, which has released a catalog of what it calls 'exotica' or, to cite the accompanying paper: "an 865 entry collection of 737 distinct targets intended to include "one of everything" in astronomy." The idea is to produce a general reference work that can guide astronomical surveys and, in the case of Breakthrough, widen the search for technosignatures. Brian Lacki (UC-Berkeley), who is lead author of the new catalog, notes that it's not meant to be restricted to SETI, though its uses there may prove interesting. Here are the four categories of exotica the catalog defines: 'Prototypes.' Here the intent is to list one example, perhaps more, an archetype of every known type of non-transient object in the sky. According to the paper, "We emphasize the inclusion of many types of energetic and extreme objects like neutron stars..., but many quiescent examples are included too."...
Advancing the Search for Technosignatures
What a pleasure to see -- after three decades -- a grant from NASA for a SETI project, and on technosignatures at that. NASA's history with SETI has been a challenging one given the subject's reception in Congress. It was in 1971 that the agency funded Barney Oliver's study on the huge array called Project Cyclops, whose price-tag would have been astronomical, but the report in which it was described provided numerous insights into the SETI effort. NASA's engagement with SETI later came under fire from William Proxmire in the Senate, resulting in the termination of SETI funding in 1982. Proxmire would later change his mind on SETI's value. Even so, the NASA Microwave Observing Program (MOP) planned as a search of 800 nearby stars in the early 1990's was again targeted in Congress and canceled shortly thereafter. The SETI effort developed in the ensuing years without government funding through efforts like Project Phoenix, which picked up the Mobile Observing Program under the...
Planetary Days as a SETI Factor
Yesterday we looked at a new paper from Robert Gray on the possibility -- even likelihood -- that the kind of signal SETI is looking for would be intermittent in nature rather than continuous. The numbers tell the story: In Gray's calculations, an isotropic transmission with a range of 1,000 light years -- i.e., a continuous beacon broadcasting in all directions -- requires on the order of 1015 W to produce the kind of signal-to-noise ratio that would allow us to pick it up with facilities like those used in current SETI searches. 1015 is a big number, going beyond the current terrestrial power consumption of 1013 W by orders of magnitude and reaching 1 percent of the total power received by Earth from the Sun. Reduce the desired range of the signal to 100 light years and the requirement for isotropic broadcasts is still daunting, demanding something like 1013 W, or 10,000 1,000 MW power plants. As Gray puts it: The large power required for continuous isotropic broadcasts could...
SETI: Intermittency and Detection
My guess is that most people think of SETI as doing a 'long stare' at a given star, on the theory that it may take time to acquire a possible signal from an extraterrestrial civilization. But in reality observations take place over short time periods. The Mega-channel ExtraTerrestrial Assay, known by its acronym as META, led by Harvard's Paul Horowitz and aided by The Planetary Society, could only devote a few minutes to any particular star. The same was true of the follow-on BETA (Billion-channel Extraterrestrial Assay), while targeted searches like Phoenix, led by Jill Tarter and using facilities at Green Bank (West Virginia), the Parkes 64-meter dish in Australia and the 300 meter radio telescope at Arecibo, still observed targets for less than an hour. The problem with this is that there are numerous reasons why an extraterrestrial signal might be intermittent. We've looked at this issue before, particularly in terms of 'Benford beacons,' as discussed by Greg and Jim Benford in...
Trident: Keeping an Eye on the Triton Flyby
38 K, which translates to -235 Celsius or -390 Fahrenheit, is cold enough to allow atmospheric nitrogen to condense as surface frost, which appears to be what is happening on Neptune's large moon Triton. This is an intriguing place, with pinkish deposits at the enormous south polar cap that are thought to contain methane ice -- the color would derive from reactions with sunlight to form a variety of pink or red compounds. Moreover, there are geyser-like plumes here that leave dark streaks over the ices, some of them active when Voyager 2 flew past. All this and Triton's odd 'cantaloupe' terrain, still mysterious, and what appear to be landscape features produced by liquid eruptions from Triton's interior. Absorbed by Triton and its mysteries for decades now, I'm all in on a Discovery Program mission concept called Trident, now under discussion at NASA (see Firming Up the Triton Flyby for my initial take on this one). It has been 31 years since Voyager's August 25, 1989 flyby. I still...