Space exploration has been filled with its share of frustrations, the most obvious being the lack of follow-up with travel to the Moon following Apollo 17. That's been a 50-year gap and counting, but a gap of half that size is also unsettling. It was in late 1995 that the Galileo probe began orbital operations at Jupiter, and since then we've had to rely on its imagery of Europa when we needed close up views of the ocean-filled moon. While we await Europa Clipper, scheduled for 2024 launch, and Jupiter Icy Moon Explorer (JUICE), slated by ESA for a departure in 2022, we're still refining Galileo images in preparation for future flybys. One thing the newly touched up images should remind us of is that Europa Clipper is going to give us views of much larger parts of Europa's surface at high resolution, complementing but considerably extending what Galileo was able to do. The latter was a mission with its own set of frustrations, of course, as a recollection of its unusable high gain...
Limitless Space Institute Establishing Research Grants
Harold “Sonny” White's investigations into controversial concepts like EMdrive and Alcubierre warp drive physics at Eagleworks Laboratories (located at the Johnson Space Center in Houston) received a good deal of attention in the interstellar community. In a recent email, Dr. White told me that he left NASA in December of 2019 and is now affiliated with the Limitless Space Institute, serving as its Director of Advanced Research and Development. The recently launched LSI is creating a series of initiative grants in support of interstellar research. What follows is the news release LSI has just released. Limitless Space Institute announces biennial Interstellar Initiative Grants (I2 Grants) Limitless Space Institute is launching biennial research grants with the goal of providing measurable and consistent support for pursuing interstellar research called Interstellar Initiative Grants. This call for proposals is seeking to support grants that can be categorized as either a tactical...
Kepler-88’s Planetary Dance Grows More Complicated
Transit timing variations are useful to astronomers trying to learn what forces are acting upon a known exoplanet. They could eventually help us ferret out the existence of a sufficiently large moon, for example, though we have yet to confirm one. But they also show us how much impact other planets in the same system can have upon the planet being observed. All this is why the Kepler-88 system has been high on the list of interesting targets for astronomers. Before the recent discovery of a new gas giant, we knew about Kepler-88 b and c, one of them (the outer world Kepler-88 c) about 20 times more massive than Kepler-88 b, a planet less massive than Neptune. The story here was the mean motion resonance, in which planet c, a Jupiter-mass world, orbits the star in 22 days while Kepler-88 b orbits in 11: Two orbits of b in the time it takes c to make a single orbit. Planet b is the only transiting planet in this system; Kepler-88 c was confirmed by radial velocity methods. The mass...
Exoplanet Atmospheres: Recalibrating Our Models
We may be measuring planetary temperatures with less than optimum tools. Calling it a "new phenomenon," Cornell University's Nikole Lewis described the background of a just published paper looking into hot Jupiter temperatures. Lewis had been increasingly puzzled by earlier work on the matter, which produced temperatures colder than scientists expected. The deputy director of the Carl Sagan Institute, Lewis joined colleagues Ryan MacDonald and Jayesh Goyal in looking for the reason, reporting their results in Astrophysical Journal Letters. What emerged was the need to fine-tune our analysis of exoplanet atmospheres, as delivered by the technique called transmission spectroscopy, in which the light of a parent star is filtered through a planetary atmosphere during a transit. Have a look, for example, at an illustration of the hot-Jupiter WASP-43b as it transits its star. Scientists have been able to construct temperature maps for the planet as well as probing its atmosphere to...
Into the Magellanics
Somehow it feels as if the Hubble Space Telescope has been with us longer than the 30 years now being celebrated. But it was, in fact, on April 24, 1990 that the instrument was launched aboard the space shuttle Discovery, being deployed the following day. 1.4 million observations have followed, with data used to write more than 17,000 peer-reviewed papers. It's safe to say that Hubble's legacy will involve decades of research going forward as its archives are tapped by future researchers. That's good reason to celebrate with a 30th anniversary image. I'm reminded that the recent work we looked at on the interstellar comet 2I/Borisov involved Hubble as part of the effort that detected the highest levels of carbon monoxide ever seen in a comet so close to the Sun. Using Hubble data is simply a given wherever feasible. And given yesterday's article on star formation and conditions in the Sun's birth cluster that may have produced leftover material from other stellar systems still...
Identifying Asteroids from Other Stars
Objects of interstellar origin in our own Solar System continue to draw attention. Comets from other stars like 2I/Borisov give us the chance to delve into the composition of different stellar systems, while the odd ‘Oumuamua still puzzles astronomers. Comet? Asteroid? Now we have a paper from Fathi Namouni (Observatoire de la Côte d'Azur, France) and Maria Helena Morais (Universidade Estadual Paulista, Brazil) targeting what the duo believe to be a population of asteroids captured from other stars in the distant past. Published in Monthly Notices of the Royal Astronomical Society, the paper relies on a high-resolution statistical search for stable orbits, ‘unwinding’ these orbits back in time to explain the location of certain Centaurs, asteroids moving perpendicular to the orbital plane of the planets and other asteroids. Centaurs, most of which do not occupy such extreme positions, are a population of asteroids moving between the outer planets in what have until now been...
An Image of Proxima Centauri c?
I'm keeping an eye on the recent attention being paid to Proxima Centauri c, the putative planet whose image may have been spotted by careful analysis of data from the SPHERE (Spectro-Polarimetric High-Contrast Exoplanet Research) imager mounted on the European Southern Observatory's Very Large Telescope. A detection by direct imaging of a planet found first by radial velocity methods would be a unique event, and the fact that this might be a planet in the nearest star system to our own makes the story even more interesting. I hasten to add that this is not Proxima b, the intriguing planet in the star's habitable zone, but the much larger candidate world, likely a mini-Neptune, that has been identified but not yet confirmed. Proxima Centauri c could use a follow-up to establish its identity, and this direct imaging work would fit the bill if it holds up. But for now, the planet is still a candidate rather than a known world. From the paper: While we are not able to provide a firm...
HD 158259: 6 Planets, Slightly Off-Tune
What an exceptional system the one around HD 158259 is! Here we have six planets, uncovered with the SOPHIE spectrograph at the Haute-Provence Observatory in the south of France, with the innermost world also confirmed through space-based TESS observations. Multiple things jump out about this system. For one thing, all six planets are close to, but not quite in, a 3:2 resonance. That 'close to' tells the tale, for researchers believe there are clues to the formation history of the system within their observations of this resonance. Image: In the planetary system HD 158259, all pairs of subsequent planets are close to the 3:2 resonance : the inner one completes about three orbits as the outer completes two. Credit & Copyright: UNIGE/NASA. The primary, HD 158259, is itself interesting, in that it's a G-class star about 88 light years out, an object just a little more massive than our Sun. But tucked well within the distance of Mercury from the Sun we find all six of the thus far...
A Look into the Origins of Interstellar Comet 2I/Borisov
We're learning interesting things about 2I/Borisov, the first interstellar comet discovered entering our Solar System ('Oumuamua may have been a comet as well, but the lack of an active gas and dust coma makes it hard to say for sure). Moving at 33 kilometers per second, 2I/Borisov is on a trajectory clearly indicating an interstellar origin. Now two different studies have shown that in terms of composition, the visiting object is unlike most of the comets found in our own system. Both the Hubble Space Telescope and the Atacama Large Millimeter/submillimeter Array (ALMA) have found levels of carbon monoxide (CO) higher than expected, a concentration greater than any comet yet detected within 2 AU of the Sun (about 300 million kilometers). The ALMA team finds the CO concentration to be somewhere between 9 and 26 times higher than inner system comets, while Hubble sees levels at least 50 percent more abundant than the average of comets in the inner system. Dennis Bodewits (Auburn...
New Horizons Parallax Program Gears Up
Back in January -- and boy does that seem like another era -- I wrote about the plan to look at two nearby stars with the help of the New Horizons spacecraft as well as observations from the general public. If you'd like to get involved, there is still time, but the date is fast approaching. Amateur equipment and digital cameras have reached the point where astronomy at a very high level can be conducted from small observatories and even back yards. Here's another chance to make the case for the value of such work. Tha planned observations take advantage of parallax, the apparent shift in position of nearby stars as measured using the radius of the Earth's orbit. Friedrich Bessel's groundbreaking work on stellar distances involved taking such measurements to calculate the distance of 61 Cygni, all this back in 1838. The apparent shift of the star against background stars allowed him to peg 61 Cygni's distance at 10 light years, reasonably close to the modern figure of 11.4. New...
Kepler-1649c: Interesting Earth-sized Planet Turns Up in Kepler Data
What intrigues me about Kepler-1649c, a newly discovered planet thrust suddenly into the news, isn't the fact that it's potentially in its star's habitable zone, nor that it is close to being Earth-sized (1.06 times Earth's radius). Instead, I'm interested in the way it was found. For this is a world turned up in exhaustive analysis of data from the original Kepler mission. Bear in mind that data from the original Kepler field ceased being gathered a full seven years ago. I share Jeff Coughlin's enthusiasm on the matter. Coughlin is an astronomer affiliated with the SETI Institute who is a co-author on the new paper, which appears in Astrophysical Journal Letters. One of the goals of the mission that began as Kepler and continued (on different star fields) as K2 was to find the fraction of stars in the galaxy that have planets in the habitable zone, using transit methods for initial detection and radial velocity follow-up on Earth. Of the new find, made with an international team of...
PUNCH: Imaging the Solar Wind
Get ready for the Polarimeter to UNify the Corona and Heliosphere (PUNCH) mission, which will begin popping up even as Centauri Dreams continues to consider heliophysics in relation to proposed missions far beyond the Solar System. We've seen recently that the Applied Physics Laboratory at Johns Hopkins is looking, under the leadership of Ralph McNutt, at a mission to 1000 AU, using an Oberth maneuver at the Sun as a possible way to reach such distances with a flight time of 50 years (see The 1000 AU Target). Thus do heliophysics and deep space intersect in unexpected ways, and not just at APL but JPL and elsewhere as we look toward the upcoming decadal survey. As for PUNCH, it's all about the solar wind and the connection between it and the Sun's corona, says PUNCH principal investigator Craig DeForest of Southwest Research Institute's Space Science and Engineering Division: "For over 50 years, we've studied the solar corona by remote imaging and the solar wind by direct sampling....
A Formation Scenario for ‘Oumuamua
The interstellar object we call 'Oumuamua was bound to be fascinating no matter what it actually was. You discover the first incoming object from interstellar space only once. But this one had its own share of peculiarities. Here was what was assumed to be a comet, but one that showed no outgassing as it reached perihelion and in fact seemed to be unusually dry. Here was an object of an apparently elongated shape, an aspect ratio with which we had nothing to compare in our own system. A tiny but detectable acceleration on the way out of the system seemed to indicate later outgassing, but how was that consistent with earlier data? I think Harvard's Avi Loeb was exactly right to point out that among the possible explanations of new objects, we can't disregard the possibility of a technology from another civilization. That 'Oumuamua was a natural object is an obvious default position, but we are at a stage in our understanding of the cosmos when we realize that the conditions for life...
Measuring a Brown Dwarf’s Winds
The brown dwarf 2MASS J10475385+2124234 is about the size of Jupiter, but maybe 40 times more massive. 33.2 light years from Earth, this object is in that category between planet and star, not massive enough to launch the same kind of nuclear reactions that power the Sun, but considerably more massive than any planet. Combining two tools -- the Very Large Array (VLA) and NASA's Spitzer Space Telescope -- scientists have now measured the wind speed here. Katelyn Allers (Bucknell University), who led the research team, realized that the combination of radio observations (VLA) and infrared (Spitzer) would make this kind of measurement possible, and expressed surprise that no one else had thought to do it before. After all, we already knew that the rotation period of Jupiter found through radio measurements differs from the period found at visible and infrared wavelengths. That disparity is key to the new measurement. For the difference is the result of two separate phenomena. Radio...
Cassini: How Saturn Heats Its Upper Atmosphere
Given their distance from the Sun, the gas and ice giants of our Solar System should not have upper atmospheres as hot as they are. Clearly, something is happening at the planets themselves to account for the warmth, and new analysis of Cassini data, just published in Nature Astronomy, lays out the case for auroral activity at the north and south poles of Saturn as the explanation there. The paper offers the results of the most complete mapping yet made of the temperature and density of a gas giant planet's upper atmosphere. Tommi Koskinen, a co-author on the paper describing these findings is a member of Cassini's Ultraviolet Imaging Spectrograph (UVIS) team: "The results are vital to our general understanding of planetary upper atmospheres and are an important part of Cassini's legacy. They help address the question of why the uppermost part of the atmosphere is so hot while the rest of the atmosphere - due to the large distance from the Sun - is cold." Image: This false-color...
Impact in the Outer System
We looked recently at Voyager 2's flyby of Uranus, via a new paper that examined the craft's magnetometer data to draw out information about the planet's magnetic environment. Science fiction author Stanley Weinbaum, author of the highly influential "A Martian Odyssey" in 1935, christened Uranus 'The Planet of Doubt' in a short story of the same name. Weinbaum couldn't have known about the world's magnetic field axis, which we've learned is tilted 60 degrees away from its spin axis. The latter itself is 98 degrees off its orbital plane. Doubtful planet indeed. Here we have a world that is spinning on its side, one that demands answers as to how it got that way. A giant impact at some point in its history is a natural assumption, but how do we explain the fact that the Uranian moons as well as the planet's ring system all show the same 98 degree orbital tilt as their parent? Back in 2011, a team led by Alessandro Morbidelli (Observatoire de la Cote d'Azur) ran a variety of simulations...
The Interstellar Ramjet at 60
The interstellar ramjet conceived by Robert Bussard may have launched more physics careers than any other propulsion concept. Numerous scientists over the years have told me how captivated they were with Poul Anderson's treatment of the idea in his novel Tau Zero. Al Jackson takes a look at Bussard's concept in today's essay, referencing its subsequent treatment in the literature and adding a few anecdotes about Bussard himself. The original paper was submitted on February 1, 1960 to Astronautica Acta, then edited by Theodore von Kármán (a 'tough judge,' Al notes) and published later that spring. Although the ramjet faces numerous engineering issues, its ability to resolve the mass-ratio problem in interstellar flight makes it certain to receive continued scrutiny. by A. A. Jackson Writers of science fiction prose noticed the difference between interplanetary flight and interstellar flight earlier than anyone. Various fictional methods of faster-than-light (FTL) were invented in the...
WFIRST: Exoplanets in the Direction of Galactic Center
The Kepler mission gave us, along with plenty of exoplanetary scenarios, a statistical look at a particular patch of sky, one containing parts of Lyra, Cygnus and Draco. Some of the stars within that field were close (Gliese 1245 is just 15 light years out), but the intention was never to home in on nearby systems. Most of the Kepler stars ranged from 600 to 3,000 light years away. Instead, Kepler would produce an overview of planets around different stellar types, including some in the habitable zone of their stars. As with all such observations, we're limited by the methods chosen, which in Kepler's case involved transits of the host star. TESS, the Transiting Exoplanet Survey Satellite, likewise uses the transit method, though with particular reference to broad sky coverage and close, bright stars. We can deploy the widely anticipated James Webb Space Telescope, to be launched next year, to follow up interesting finds, but let's also consider how useful the Wide Field Infrared...
Getting Real with the Habitable Zone
Perhaps the most significant paper I have yet to read on the subject of habitable zones has emerged from the University of Oxford, with collateral help from the Lamb and Flag on nearby St. Giles St. (a stout place), along with two scientists who claim no affiliation other than 'Earth.' The paper defines the Really Habitable Zone, that region around a star within which acceptable gins and tonic are likely to be found. "We suggest that planets in the Really Habitable Zone be early targets for the JWST, because by the time that thing finally launches we're all going to need a drink." Which is so patently true that I can only nod with approval. Adding that most habitable zone models now in play are defined by the need to justify the budget of the JWST to the US Congress, the authors proceed to note the difficulties in creating a habitable zone definition with which all astronomers can agree. What all astronomers can support, they argue, is a definition of what makes life worth living....
Deep Time: Exoplanet Atmospheres in Perspective
As we improve our instrumentation, the search for worlds where life can flourish will generate more and more Earth-sized targets for extended investigation. Here time plays an interesting role, for our own planet seen two billion years ago would present a different aspect than the Earth of today. Atmospheres evolve, a fact that Lisa Kaltenegger has studied in a series of papers in recent years, working with colleagues at Cornell's Carl Sagan Institute, where she is director. The result is a series of spectral templates applicable to Earth-like planets at various stages of evolution. We have only one known example of a living planet to work with, so Kaltenegger's atmospheric models are designed to match the Earth at different stages of development. The prebiotic Earth of 3.9 billion years ago is saturated with carbon dioxide, while what the paper refers to as Epoch 2, some 3.5 billion years ago, is a world without oxygen. Three more epochs can be defined covering the rise of...