I'm keeping an eye on the recent attention being paid to Proxima Centauri c, the putative planet whose image may have been spotted by careful analysis of data from the SPHERE (Spectro-Polarimetric High-Contrast Exoplanet Research) imager mounted on the European Southern Observatory's Very Large Telescope. A detection by direct imaging of a planet found first by radial velocity methods would be a unique event, and the fact that this might be a planet in the nearest star system to our own makes the story even more interesting. I hasten to add that this is not Proxima b, the intriguing planet in the star's habitable zone, but the much larger candidate world, likely a mini-Neptune, that has been identified but not yet confirmed. Proxima Centauri c could use a follow-up to establish its identity, and this direct imaging work would fit the bill if it holds up. But for now, the planet is still a candidate rather than a known world. From the paper: While we are not able to provide a firm...
HD 158259: 6 Planets, Slightly Off-Tune
What an exceptional system the one around HD 158259 is! Here we have six planets, uncovered with the SOPHIE spectrograph at the Haute-Provence Observatory in the south of France, with the innermost world also confirmed through space-based TESS observations. Multiple things jump out about this system. For one thing, all six planets are close to, but not quite in, a 3:2 resonance. That 'close to' tells the tale, for researchers believe there are clues to the formation history of the system within their observations of this resonance. Image: In the planetary system HD 158259, all pairs of subsequent planets are close to the 3:2 resonance : the inner one completes about three orbits as the outer completes two. Credit & Copyright: UNIGE/NASA. The primary, HD 158259, is itself interesting, in that it's a G-class star about 88 light years out, an object just a little more massive than our Sun. But tucked well within the distance of Mercury from the Sun we find all six of the thus far...
A Look into the Origins of Interstellar Comet 2I/Borisov
We're learning interesting things about 2I/Borisov, the first interstellar comet discovered entering our Solar System ('Oumuamua may have been a comet as well, but the lack of an active gas and dust coma makes it hard to say for sure). Moving at 33 kilometers per second, 2I/Borisov is on a trajectory clearly indicating an interstellar origin. Now two different studies have shown that in terms of composition, the visiting object is unlike most of the comets found in our own system. Both the Hubble Space Telescope and the Atacama Large Millimeter/submillimeter Array (ALMA) have found levels of carbon monoxide (CO) higher than expected, a concentration greater than any comet yet detected within 2 AU of the Sun (about 300 million kilometers). The ALMA team finds the CO concentration to be somewhere between 9 and 26 times higher than inner system comets, while Hubble sees levels at least 50 percent more abundant than the average of comets in the inner system. Dennis Bodewits (Auburn...
New Horizons Parallax Program Gears Up
Back in January -- and boy does that seem like another era -- I wrote about the plan to look at two nearby stars with the help of the New Horizons spacecraft as well as observations from the general public. If you'd like to get involved, there is still time, but the date is fast approaching. Amateur equipment and digital cameras have reached the point where astronomy at a very high level can be conducted from small observatories and even back yards. Here's another chance to make the case for the value of such work. Tha planned observations take advantage of parallax, the apparent shift in position of nearby stars as measured using the radius of the Earth's orbit. Friedrich Bessel's groundbreaking work on stellar distances involved taking such measurements to calculate the distance of 61 Cygni, all this back in 1838. The apparent shift of the star against background stars allowed him to peg 61 Cygni's distance at 10 light years, reasonably close to the modern figure of 11.4. New...
Kepler-1649c: Interesting Earth-sized Planet Turns Up in Kepler Data
What intrigues me about Kepler-1649c, a newly discovered planet thrust suddenly into the news, isn't the fact that it's potentially in its star's habitable zone, nor that it is close to being Earth-sized (1.06 times Earth's radius). Instead, I'm interested in the way it was found. For this is a world turned up in exhaustive analysis of data from the original Kepler mission. Bear in mind that data from the original Kepler field ceased being gathered a full seven years ago. I share Jeff Coughlin's enthusiasm on the matter. Coughlin is an astronomer affiliated with the SETI Institute who is a co-author on the new paper, which appears in Astrophysical Journal Letters. One of the goals of the mission that began as Kepler and continued (on different star fields) as K2 was to find the fraction of stars in the galaxy that have planets in the habitable zone, using transit methods for initial detection and radial velocity follow-up on Earth. Of the new find, made with an international team of...
PUNCH: Imaging the Solar Wind
Get ready for the Polarimeter to UNify the Corona and Heliosphere (PUNCH) mission, which will begin popping up even as Centauri Dreams continues to consider heliophysics in relation to proposed missions far beyond the Solar System. We've seen recently that the Applied Physics Laboratory at Johns Hopkins is looking, under the leadership of Ralph McNutt, at a mission to 1000 AU, using an Oberth maneuver at the Sun as a possible way to reach such distances with a flight time of 50 years (see The 1000 AU Target). Thus do heliophysics and deep space intersect in unexpected ways, and not just at APL but JPL and elsewhere as we look toward the upcoming decadal survey. As for PUNCH, it's all about the solar wind and the connection between it and the Sun's corona, says PUNCH principal investigator Craig DeForest of Southwest Research Institute's Space Science and Engineering Division: "For over 50 years, we've studied the solar corona by remote imaging and the solar wind by direct sampling....
A Formation Scenario for ‘Oumuamua
The interstellar object we call 'Oumuamua was bound to be fascinating no matter what it actually was. You discover the first incoming object from interstellar space only once. But this one had its own share of peculiarities. Here was what was assumed to be a comet, but one that showed no outgassing as it reached perihelion and in fact seemed to be unusually dry. Here was an object of an apparently elongated shape, an aspect ratio with which we had nothing to compare in our own system. A tiny but detectable acceleration on the way out of the system seemed to indicate later outgassing, but how was that consistent with earlier data? I think Harvard's Avi Loeb was exactly right to point out that among the possible explanations of new objects, we can't disregard the possibility of a technology from another civilization. That 'Oumuamua was a natural object is an obvious default position, but we are at a stage in our understanding of the cosmos when we realize that the conditions for life...
Measuring a Brown Dwarf’s Winds
The brown dwarf 2MASS J10475385+2124234 is about the size of Jupiter, but maybe 40 times more massive. 33.2 light years from Earth, this object is in that category between planet and star, not massive enough to launch the same kind of nuclear reactions that power the Sun, but considerably more massive than any planet. Combining two tools -- the Very Large Array (VLA) and NASA's Spitzer Space Telescope -- scientists have now measured the wind speed here. Katelyn Allers (Bucknell University), who led the research team, realized that the combination of radio observations (VLA) and infrared (Spitzer) would make this kind of measurement possible, and expressed surprise that no one else had thought to do it before. After all, we already knew that the rotation period of Jupiter found through radio measurements differs from the period found at visible and infrared wavelengths. That disparity is key to the new measurement. For the difference is the result of two separate phenomena. Radio...
Cassini: How Saturn Heats Its Upper Atmosphere
Given their distance from the Sun, the gas and ice giants of our Solar System should not have upper atmospheres as hot as they are. Clearly, something is happening at the planets themselves to account for the warmth, and new analysis of Cassini data, just published in Nature Astronomy, lays out the case for auroral activity at the north and south poles of Saturn as the explanation there. The paper offers the results of the most complete mapping yet made of the temperature and density of a gas giant planet's upper atmosphere. Tommi Koskinen, a co-author on the paper describing these findings is a member of Cassini's Ultraviolet Imaging Spectrograph (UVIS) team: "The results are vital to our general understanding of planetary upper atmospheres and are an important part of Cassini's legacy. They help address the question of why the uppermost part of the atmosphere is so hot while the rest of the atmosphere - due to the large distance from the Sun - is cold." Image: This false-color...
Impact in the Outer System
We looked recently at Voyager 2's flyby of Uranus, via a new paper that examined the craft's magnetometer data to draw out information about the planet's magnetic environment. Science fiction author Stanley Weinbaum, author of the highly influential "A Martian Odyssey" in 1935, christened Uranus 'The Planet of Doubt' in a short story of the same name. Weinbaum couldn't have known about the world's magnetic field axis, which we've learned is tilted 60 degrees away from its spin axis. The latter itself is 98 degrees off its orbital plane. Doubtful planet indeed. Here we have a world that is spinning on its side, one that demands answers as to how it got that way. A giant impact at some point in its history is a natural assumption, but how do we explain the fact that the Uranian moons as well as the planet's ring system all show the same 98 degree orbital tilt as their parent? Back in 2011, a team led by Alessandro Morbidelli (Observatoire de la Cote d'Azur) ran a variety of simulations...
The Interstellar Ramjet at 60
The interstellar ramjet conceived by Robert Bussard may have launched more physics careers than any other propulsion concept. Numerous scientists over the years have told me how captivated they were with Poul Anderson's treatment of the idea in his novel Tau Zero. Al Jackson takes a look at Bussard's concept in today's essay, referencing its subsequent treatment in the literature and adding a few anecdotes about Bussard himself. The original paper was submitted on February 1, 1960 to Astronautica Acta, then edited by Theodore von Kármán (a 'tough judge,' Al notes) and published later that spring. Although the ramjet faces numerous engineering issues, its ability to resolve the mass-ratio problem in interstellar flight makes it certain to receive continued scrutiny. by A. A. Jackson Writers of science fiction prose noticed the difference between interplanetary flight and interstellar flight earlier than anyone. Various fictional methods of faster-than-light (FTL) were invented in the...
WFIRST: Exoplanets in the Direction of Galactic Center
The Kepler mission gave us, along with plenty of exoplanetary scenarios, a statistical look at a particular patch of sky, one containing parts of Lyra, Cygnus and Draco. Some of the stars within that field were close (Gliese 1245 is just 15 light years out), but the intention was never to home in on nearby systems. Most of the Kepler stars ranged from 600 to 3,000 light years away. Instead, Kepler would produce an overview of planets around different stellar types, including some in the habitable zone of their stars. As with all such observations, we're limited by the methods chosen, which in Kepler's case involved transits of the host star. TESS, the Transiting Exoplanet Survey Satellite, likewise uses the transit method, though with particular reference to broad sky coverage and close, bright stars. We can deploy the widely anticipated James Webb Space Telescope, to be launched next year, to follow up interesting finds, but let's also consider how useful the Wide Field Infrared...
Getting Real with the Habitable Zone
Perhaps the most significant paper I have yet to read on the subject of habitable zones has emerged from the University of Oxford, with collateral help from the Lamb and Flag on nearby St. Giles St. (a stout place), along with two scientists who claim no affiliation other than 'Earth.' The paper defines the Really Habitable Zone, that region around a star within which acceptable gins and tonic are likely to be found. "We suggest that planets in the Really Habitable Zone be early targets for the JWST, because by the time that thing finally launches we're all going to need a drink." Which is so patently true that I can only nod with approval. Adding that most habitable zone models now in play are defined by the need to justify the budget of the JWST to the US Congress, the authors proceed to note the difficulties in creating a habitable zone definition with which all astronomers can agree. What all astronomers can support, they argue, is a definition of what makes life worth living....
Deep Time: Exoplanet Atmospheres in Perspective
As we improve our instrumentation, the search for worlds where life can flourish will generate more and more Earth-sized targets for extended investigation. Here time plays an interesting role, for our own planet seen two billion years ago would present a different aspect than the Earth of today. Atmospheres evolve, a fact that Lisa Kaltenegger has studied in a series of papers in recent years, working with colleagues at Cornell's Carl Sagan Institute, where she is director. The result is a series of spectral templates applicable to Earth-like planets at various stages of evolution. We have only one known example of a living planet to work with, so Kaltenegger's atmospheric models are designed to match the Earth at different stages of development. The prebiotic Earth of 3.9 billion years ago is saturated with carbon dioxide, while what the paper refers to as Epoch 2, some 3.5 billion years ago, is a world without oxygen. Three more epochs can be defined covering the rise of...
Introducing the Q-Drive: A concept that offers the possibility of interstellar flight
If Breakthrough Starshot is tackling the question of velocities at a substantial percentage of lightspeed, what do we do about the payload question? A chip-sized spacecraft is challenging in terms of instrumentation and communications, not to mention power. Enter Jeff Greason's Q-Drive, with an entirely different take on high velocity missions within the Solar System and beyond it. Drawing its energies from the medium to deploy an inert propellant, the Q-Drive ups the payload enormously. But can it be engineered? Alex Tolley has been doing a deep dive on the concept and talking to Dr. Greason about the possibilities, out of which today's essay has emerged. A Centauri Dreams regular, Alex has a history of innovative propulsion work, and with Brian McConnell is co-author of A Design for a Reusable Water-Based Spacecraft Known as the Spacecoach (Springer, 2016), by Alex Tolley Technical University of Munich for Project Icarus. Credit: Adrian Mann. The interstellar probe coasted at 4% c...
Voyager 2: Digging Deeper into the Data from Uranus
Voyager 2’s flyby of Uranus and its moons occurred on January 24, 1986, returning images that for many of us will always be associated with the outpouring of grief over the loss of Challenger, which occurred a scant four days later. But Voyager’s data were voluminous, its images striking, as we examined the ice giant and its unusual moons up close. The spacecraft closed to 81,500 kilometers of the cloud tops, examining the ring system and discovering 11 new moons. Image: The planet Uranus, in an image taken by the spacecraft Voyager 2 in 1986. The Voyager project is managed for NASA by the Jet Propulsion Laboratory. Credit: NASA/JPL-Caltech. Uranus was already known from early analysis of the Voyager data to have an odd magnetosphere, created where solar wind plasma interacts with the planet’s magnetic field. The planet spins on its side, and its magnetic field axis is tilted 60 degrees away from its spin axis, producing a magnetosphere that wobbles in ways that researchers liken to...
The 1000 AU Target
One reason I wanted to run yesterday's article about the Opher et al. paper on the heliosphere, aside from its innate scientific interest (and it is a very solid, well crafted piece of work) is to illustrate how much we still have to learn about the balloon-like bubble carved out by the solar wind. The entire Solar System fits within it easily, but we observe only from inside and have little knowledge of its structure. None of the paper's authors would argue that we have the definitive answer on the shape of the heliosphere. That will take a good deal more data, as the paper notes: Future remote-sensing and in situ measurements will be able to test the reality of a rounder heliosphere. In Fig. 6, we show our prediction for the interstellar magnetic field ahead of the heliosphere at V2. In addition, future missions such as the Interstellar Mapping and Acceleration Probe will return ENA [energetic neutral atom] maps at higher energies than present missions and so will be able to...
A New Shape for the Heliosphere
We have all too little information about the heliosphere, the only data from beyond it being what we have collected from the two Voyagers. Altogether, only five spacecraft -- Pioneer 10 and 11, the Voyagers and New Horizons -- have escaped the gravity of the Sun enroute to interstellar space. To understand how the heliosphere operates, and the interactions between the solar wind of charged particles and magnetic fields with what lies beyond, we’d really like to be able to look back at our system in its entirety. The Interstellar Probe concept being pondered at Johns Hopkins Applied Physics Laboratory and elsewhere is one possible way to do this. I’ll have more to say about Interstellar Probe in coming days, though I do want to give a nod to its history, which can be traced as far back as 1958 and a report from the National Academy of Sciences. APL’s Ralph McNutt has been studying interstellar concepts for decades, and was a major source as I worked on my original Centauri Dreams...
Ryugu’s Clues to the Early Solar System
Asteroid 162173 Ryugu, recently explored in depth by the Hayabusa2 spacecraft, is a C-type asteroid, rich in carbon. About a kilometer in diameter, it is evidently composed of highly porous material, and seems to have been formed by the agglomeration of fragments from a larger parent body that was broken apart by impacts. We learn this from a new paper in Nature that examines the object's high porosity and the significantly low mechanical strength of its rock fragments, which affect how it would act if hitting an atmosphere. Matthias Grott, of the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) is the principal investigator for MARA, the DLR-built radiometer that flew on board Hayabusa2 and landed aboard the Mobile Asteroid Surface Scout (MASCOT). Says Grott: "The published results are a confirmation of the results from the studies by the DLR radiometer MARA… It has now been shown that the rock analysed by MARA is typical for the entire surface of the...
Extending the Hunt for Trans-Neptunian Objects
316 Trans-Neptunian Objects (TNOs) have turned up in a new analysis of data from the Dark Energy Survey, 139 of these being new objects that have not been previously published in the literature. With roughly 3,000 TNOs known, the catalog from this work represents a healthy 10 percent of the total, but more significantly, extends and fine-tunes our methods for tracking such objects. Trans-Neptunian Objects, of which Pluto/Charon represents the best known, orbit beyond Neptune, with Kuiper Belt Objects being a sub-category existing between 30 and 55 AU from the Sun. Here the population is thought to be in the tens of thousands when restricting the definition by size to objects at least 100 kilometers across. But to these Kuiper Belt objects we can add the population of so-called Scattered Disk Objects, which exist in eccentric and inclined orbits, the more extreme of these with semi-major axes between 150 and 250 AU (and then there's Sedna, with aphelion now estimated at more than 900...