The Spitzer Space Telescope, which is to end its mission on January 30, has a special place in my memory. I was making a trip to the Jet Propulsion Laboratory as part of the research for my Centauri Dreams book when I noticed on a monitor a countdown -- still in days -- for the launch of Spitzer, then known as the Space Infrared Telescope Facility (SIRTF). The observatory was launched on the 25th of August, 2003. I remember hot Pasadena weather, a conversation with aerospace legend Adrian Hooke (he was a member of the Kennedy Space Center launch team for Apollo 9, 10, 11 and 12, among much else), a rousing talk with Humphrey "Hoppy" Price about interstellar possibilities. So many good conversations, some serious interviews, and a growing enthusiasm for interstellar flight. But Spitzer had my attention because it was the next mission, one of the Great Observatory missions which included the Hubble Space Telescope, the Compton Gamma Ray Observatory, the Chandra X-ray Observatory, and...
An Impact-Driven End to ‘Snowball Earth’?
The oldest preserved impact structure on Earth appears to be at Yarrabubba in Western Australia, where a magnetic anomaly about 20 kilometers in diameter has been interpreted to be a remnant of an original impact crater 70 kilometers across. Here, what had been an approximate age of 2.65 to 1.075 billion years has now been constrained to 2.229 billion years, making Yarrabubba 200 million years older than the next oldest impact. A team led by Timmons Erickson (Curtin University) analyzed the minerals zircon and monazite at the site. Their sample showed shock recrystallization (in the form of so-called neoblasts) from an asteroid strike, the analysis of which allowed them to pin down the structure’s age. A paper just out in Nature Communications reports on the team’s use of uranium-lead (U–Pb) dating to investigate the age of the shock features and impact melt. A global climate change may have occurred as a result of this impact, perhaps one with consequences for so-called ‘snowball...
A Deep Dive into Tidal Lock
Mention red dwarf habitable zones and tidal lock invariably comes up. If a planet is close enough to a dim red star to maintain temperatures suitable for life, wouldn't it keep one face turned toward it in perpetuity? But tidal lock, as Ashley Baldwin explains in the essay below, is more complex than we sometimes realize. And while there are ways to produce temperate climate models for such planets, tidal lock itself is a factor in not just M-dwarfs, but K- and even G-class stars like the Sun. Flip a few starting conditions and Earth itself might have been in tidal lock. The indefatigable Dr. Baldwin keeps a close eye on the latest exoplanet research, somehow balancing his astronomical scholarship with a career as consultant psychiatrist at the 5 Boroughs Partnership NHS Trust (Warrington, UK). Read on to learn a great deal about where current thinking stands on a subject critical to the question of red dwarf habitability. by Ashley Baldwin "Tidal locking", "captured rotation" or...
A Possible Proxima Centauri c
While we continue to labor over the question of planets around Alpha Centauri A and B, Proxima Centauri -- that tiny red dwarf with an unusually interesting planet in the habitable zone -- remains a robust source of new work. It’s surely going to be an early target for whatever interstellar probes we eventually send, and is the presumptive first destination of Breakthrough Starshot. Now we have news of a possible second planet here, though well outside the habitable zone. Nonetheless, Proxima Centauri c, if it is there, commands the attention. A new paper offers the results of continuing analysis of the radial velocity dataset that led to the discovery of Proxima b, work that reflects the labors of Mario Damasso and Fabio Del Sordo, who re-analyzed these data using an alternative treatment of stellar noise in 2017. Damasso and Del Sordo now present new evidence, working with, among others, Proxima Centauri b discoverer Guillem Anglada-Escudé, and incorporating astrometric data from...
New Planets from Old Data
We rightly celebrate exoplanet discoveries from dedicated space missions like TESS (Transiting Exoplanet Survey Satellite), watching the work go from initial concept to first light in space and early results. But let's not forget the growing usefulness of older data, tapped and analyzed in new ways to reveal hidden gems. Thus recent work out of the Carnegie Institution for Science, where Fabo Feng and Paul Butler have mined the archives of the Ultraviolet and Visual Echelle Spectrograph survey of 33 nearby red dwarf stars, a project operational from 2000 to 2007. The duo have uncovered five newly discovered exoplanets and eight more candidates, all found orbiting nearby red dwarf stars. Two of these are conceivably in the habitable zone, putting nearby stars GJ180 and GJ229A into position as potential targets for next-generation instruments. Both of these stars host super-Earths (7.5 and 7.9 times the mass of Earth), with orbital periods of 106 and 122 days respectively. Like the...
A Satellite for Eurybates
3548 Eurybates is a Jupiter trojan, one of the family of objects that have moved within the Lagrange points around Jupiter for billions of years (the term is libration, meaning these asteroids actually oscillate around the Lagrange points). Consider them trapped objects, of consequence because they have so much to tell us about the early Solar System. The Lucy mission aims to visit both populations (the 'Greeks' and the 'Trojans') at Jupiter's L4 and L5 Lagrangians when it heads for Jupiter following launch in 2021. Image: During the course of its mission, Lucy will fly by six Jupiter Trojans. This time-lapsed animation shows the movements of the inner planets (Mercury, brown; Venus, white; Earth, blue; Mars, red), Jupiter (orange), and the two Trojan swarms (green) during the course of the Lucy mission. Credit: Astronomical Institute of CAS/Petr Scheirich (used with permission). Right now the focus is on Eurybates as mission planning continues, for we've just learned thanks to the...
Orange Dwarfs: ‘Goldilocks’ Stars for Life?
Our Sun is a G2V type star, or to use less formidable parlance, a yellow dwarf. It was inevitable that as we began considering planets around other stars (well before the first of these were discovered), we would imagine solar-class stars as the best place to look for life, but attention has swung to other possibilities in recent years, especially toward red dwarfs, which comprise a high percentage of all the stars in the galaxy. Now it seems that the problems of M-dwarfs are causing a reconsideration of the class in between, the K-class orange dwarfs. Alpha Centauri B is such a star, although its proximity to Centauri A may raise problems in planet formation that we have yet to observe. Fortunately, our long-distance exploration of the Centauri stars is well underway, and we should have new information about what orbits the two primary stars here within a few short years. If we were to find a habitable zone rocky world around Centauri B, one thing that makes it interesting is the...
New Entry in High Precision Spectroscopy
As if I don't have enough trouble figuring out acronyms, I now have to figure out how to pronounce acronyms. The issue comes up because a new NASA instrument now in use at Kitt Peak National Observatory is a spectrograph built at Penn State called NEID. Now NEID stands for NN-EXPLORE Exoplanet Investigations with Doppler spectroscopy. Here we have an acronym within an acronym, for NN-EXPLORE itself stands for the NASA-NSF Exoplanet Observational Research partnership that funds NEID. Here's the trick: The acronym NEID is not pronounced 'NEE-id' or 'NEED' but 'NOO-id.' The reason: Kit Peak is on land owned by the Tohono O'odham nation, and the latter pronunciation honors a verb that means something close to 'to see' in the Tohono O'odham language. As a person fascinated with linguistics, I'm delighted to see this nod to a language whose very survival is threatened by the small number of speakers (count me as one infinitely cheered by the resurrection of Cornish, for example). And as...
TOI 700 d: A Possible Habitable Zone Planet
Among the discoveries announced at the recent meeting of the American Astronomical Society in Hawaii was TOI 700 d, a planet potentially in the habitable zone of its star. TOI stands for TESS Object of Interest, reminding us that this is the first Earth-size planet the Transiting Exoplanet Survey Satellite has uncovered in its data whose orbit would allow the presence of liquid water on the surface. The Spitzer instrument has confirmed the find, highlighting the fact that Spitzer itself, a doughty space observatory working at infrared wavelengths, is nearing the end of its operations. Thus Joseph Rodriguez (Center for Astrophysics | Harvard & Smithsonian): "Given the impact of this discovery - that it is TESS's first habitable-zone Earth-size planet - we really wanted our understanding of this system to be as concrete as possible. Spitzer saw TOI 700 d transit exactly when we expected it to. It's a great addition to the legacy of a mission that helped confirm two of the TRAPPIST-1...
Discovery of TESS Mission’s First Circumbinary Planet
TOI 1338b is a great catch, a circumbinary world that turned up in TESS data and was announced at the ongoing meeting of the American Astronomical Society in Hawai'i. Ravi Kopparapu (NASA GSFC) describes the discovery process in the essay below. The system lies 1,300 light years out in the constellation Pictor, with the planet transiting the larger star. Dr. Kopparapu's work on exoplanet habitability is well known to Centauri Dreams readers. See, for example, his How Common Are Potential Habitable Worlds in Our Galaxy?, which ran in 2014. He followed this up with a look at an unusual multi-planet system (Ravi Kopparapu: Looking at K2-72). Analyzing habitable zone possibilities around different kinds of stars, as well as modeling and characterizing exoplanet atmospheres, plays a major role in his research interests. Here Dr. Kopparapu tells us about the new world and the significant role of an intern in its discovery, reminding us that the opportunities for young scientists to make a...
Some Thoughts on Science Fiction Visuals
With the conclusion of The Man in the High Castle's TV version, I've been having a few conversations about the ins and outs of turning the novel into a considerably bloated series. Or maybe I should say simply that when I realized at the end of the first season that, having made their choices and essentially filmed their version of the book, the producers were now going to go for further seasons, I was dismayed. Who would be making the choices now that the original author was not available, and how would the plot unfold? An ongoing series can do this well, of course -- consider the absorbing tale unfolding in The Expanse -- but going well outside the boundaries of a foundational novel can often be asking for trouble. While I wasn't much taken with the way The Man in the High Castle's plot played out on TV, I did go ahead and watch every episode because I found the visuals so entrancing. The idea of a Japanese occupied California was fully realized, with touches like the Japanese...
Bound in Shallows: Space Exploration and Institutional Drift
If those of us from the Apollo era sometimes look back with regret at the failure of our society to follow through on early lunar exploration, we can still acknowledge that the issue is far from settled. As Nick Nielsen points out in the essay below, we're in an interesting period, one in which commercial interests are changing how we look at future space missions, and indeed, changing our view of what may be considered the central project of our civilization. With historical sweep that takes in the death of Socrates, paleolithic art and Arthurian mythology, Nick sees as the great monuments of civilization not just the Pyramids, the Parthenon and the Taj Mahal, but also the Large Hadron Collider and the International Space Station. Here's a richly textured probe, then, into the mythologies that make us who we are and who we will be, and the forces that shape what a civilization chooses to do. by J. N. Nielsen There is a Tide in the affayres of men, Which taken at the Flood, leades on...
Mapping Asteroid Bennu
The holiday season seems an appropriate time to thank not only my Centauri Dreams readers for their continued high level of discussion in these pages, but also the army of citizen scientists who are out there working on everything from exoplanet detection to asteroid mapping. We saw recently how valuable the work of amateurs like Thiam-Guan Tan can be in confirming a possible exoplanet, while projects like the Habitable Exoplanet Hunting Project continue coming online to push the boundaries of what amateur equipment can do. Now comes word of the signal contribution made to OSIRIS-REx and its mission to asteroid Bennu. You'll recall that when the spacecraft arrived at the asteroid, the surface was found to be far more littered with rocks and boulders than anyone had foreseen. Finding a spot for landing and retrieving samples would be no easy task, but it was made substantially more manageable by a team of 3,500 people using their PCs to join in analysis and characterization of the...
CHEOPS Enters the Game
The Egyptian monarch Khufu was the second pharaoh of the Fourth Dynasty, which dates him back to the earlier years of the Old Kingdom period around the 26th century BC. I mention this figure, about which all too little is known, because his name is a link between the great monuments of an early culture (Khufu seems to have commissioned the Great Pyramid of Giza) and present-day engineering. Imagine how wondrous the Great Pyramid would have been to the average passerby of the time, and then realize that Khufu's Hellenized name was Cheops, a monicker reflected in the acronym of our recently launched CHEOPS exoplanet observatory. I always enjoy untangling acronyms, some of which are more labored than others. Did you know, for example, that the name of the Japanese IKAROS solar sail is actually an acronym standing for Interplanetary Kite-craft Accelerated by Radiation Of the Sun? Then there's OSIRIS-REx (also satisfyingly Egyptian), which weighs in as Origins, Spectral Interpretation,...
Will Humans Ever Walk on Exoplanets?
Searching for biosignatures in exoplanet atmospheres is something we can look forward to in as little as a decade, judging from the progress now being made in planning future ground- and space-based telescopes. A key challenge is to catalog habitable zone planets upon which to practice our methods, and our tools for doing this are steadily evolving. Take ESPRESSO (Echelle Spectrograph for Rocky OxoPlanet and Stable Spectroscopic Observations), which can reduce a star's movement to or away from us down to a minute 10 centimeters per second. You can imagine what this means for radial velocity studies, which now routinely parse the to-and-fro of stellar motions as a way of detecting exoplanets. The smaller the gravitational effect we can detect, the sharper our observations, bringing much smaller planets in range. We move from hot Jupiters and Neptunes into the realm of Earth-mass worlds around stars like the Sun. Commissioned in 2017, ESPRESSO is installed at the European Southern...
SWIMMERs: A Thought Experiment on the Potential and Limitations of Propellantless Interstellar Travel
Can we tap ionized particles in the interstellar medium as a way of exchanging momentum for propulsion? It's a concept with a lot of pluses if it can be made to work, chief among them the fact that such a device would be propellantless. Looking at the topic today is Drew Brisbin, a postdoctoral researcher in astronomy who received his PhD from Cornell University in 2014. Dr. Brisbin has since gone on to work towards better understanding his field of specialization: the study of galaxy evolution in the early universe. He currently works at Universidad Diego Portales, in Santiago Chile, where he collaborates closely with other researchers using some of the most sensitive telescopes in the world, located in the mountainous Chilean desert. In addition to his formal work and outdoors-oriented hobbies, he also enjoys dreaming about the future of humanity. One particular dream recently seemed to warrant some further investigation, leading him to the ideas he explains today. By Drew Brisbin...
Amateur Astronomers Join Hunt for Exoplanets
An Australian amateur astronomer named Thiam-Guan Tan has made a name for himself in the realm of exoplanets. Tan participated in the discovery of an exoplanet that may orbit within its star's habitable zone. LHS 1140 b is a super-Earth some 41 light years from Earth that orbits a red dwarf star. Back in September of 2016, with a number of professional observatories looking at the host star, Tan provided key data to help verify the existence of LHS 1140b. "It was fortunate that I was able to catch a transit," said Tan, a retired engineer with a 12-inch telescope who has also discovered several supernovae. He is quoted in a newspaper called The West Australian as saying "That night, the Centre for Astrophysics had lined up five other telescopes across Australia and Hawaii to observe but they were all clouded out." Tan's work with exoplanet transits continues, an illustration of the role that talented amateurs with affordable equipment (Tan's telescope cost $15,000) can play. Image:...
A White Dwarf’s Giant Planet
Calling it a ‘chance discovery,’ the University of Warwick’s Boris Gänsicke recently presented the results of his team’s study of some 7,000 white dwarf stars, all of them cataloged by the Sloan Digital Sky Survey. One drew particular interest because chemical elements turned up in spectroscopic studies indicating something unusual. Says Gänsicke, “We knew that there had to be something exceptional going on in this system, and speculated that it may be related to some type of planetary remnant.” And that makes the star WDJ0914+1914 an example of what a stellar system that survived, at least partially, the red giant phase of its host star might look like as a planet orbits the Earth-sized white dwarf. This work, which draws on data from the European Southern Observatory’s X-shooter spectrograph at the Very Large Telescope in Chile, confirms hydrogen, oxygen and sulphur associated with the white dwarf, all found in a disk of gas around the star rather than being present in the white...
New Horizons: A Slowing Solar Wind Far from Earth
It should be evident why getting information about the solar wind is useful for future deep space missions. Concepts like the electric sail, recently discussed in these pages, and various forms of magnetic sail using superconductors all rely on hitching a ride on this fast-moving stream of particles and magnetic fields emanating from the Sun. A key problem has been tracking the solar wind's behavior in space through changing solar cycles as we get to increasingly large distances from the Sun, but fortunately we do have a few assets at system's edge. New Horizons' Solar Wind Around Pluto (SWAP) instrument continues to return data useful not only for Solar System science but also for understanding how the outflow from the Sun could affect spacecraft in the Kuiper Belt. Of interest here are the spacecraft's measurements of 'interstellar pickup ions' in the outer heliosphere, a region through which only the two Voyagers and the two Pioneers before them have previously traveled. Pickup...
The Purple Hills of Proxima b
In our continuing look at biosignatures that could flag the presence of life on other worlds, we've sometimes considered the so-called 'red edge,' the sharp change in reflectance of vegetation that shows up in the near-infrared. It's worth remembering that vegetation is the largest reflecting surface on Earth (about 60 percent of the land surface), with an increase in reflectance that shows up around 700 nm. As Alex Tolley explains below, the red edge may shift depending on the evolution of plant life and the variables, including light intensity but comprising many other factors, that would affect life on M-dwarf planets. These are the first whose atmospheres we'll be seriously examining for biosignatures, and the question of how to extrapolate from Earth life to environments as exotic as these is complex. A Centauri Dreams regular, Alex reminds us that vegetative life may prove adaptable in ways that will surprise us. by Alex Tolley Artist’s conception of Proxima Centauri b. Credit:...