First Light for NEAR: Searching for Planets around Centauri A and B

I marvel that so many of the big questions that have preoccupied me during my life are starting to yield answers. Getting New Horizons to Pluto was certainly part of that process, as a mysterious world began to reveal its secrets. But we're also moving on the Alpha Centauri question. We have a habitable zone planet around Proxima, and we're closing on the orbital space around Centauri A and B, a G-class star like our Sun and a cooler K-class orange dwarf in a tight binary orbit, the nearest stars to our own. At the heart of the research is an instrument called a thermal infrared coronagraph, built in collaboration between the European Southern Observatory and Breakthrough Watch, the privately funded attempt to find and characterize rocky planets around not just Alpha Centauri but other stars within a 20 light year radius of Earth. The coronagraph blocks out most of the stellar light while being optimized to capture the infrared frequencies emitted by an orbiting planet. Note that...

read more

LightSail 2 Inspires Thoughts on Fictional Sails

Solar sails are a case of science fiction anticipating the scientific journals, though in an odd way. Engineer Carl Wiley (writing as Russell Saunders) described the physics of solar sailing and some early engineering concepts in the pages of John Campbell's Astounding back in 1951, but he did it in a nonfiction article of the kind the magazine routinely ran. Richard Garwin would discuss sails in the scientific literature in "Solar Sailing: A Practical Method of Propulsion within the Solar System," which ran in 1958 in the journal Jet Propulsion. Then we waited for fictional treatments, which began with Cordwainer Smith's wonderful "The Lady Who Sailed the Soul" (Galaxy, April 1960) and a string of stories from top authors of the time in just a few quick years -- Jack Vance's "Gateway to Strangeness" (Amazing Stories, 1962), Poul Anderson's "Sunjammer" (Analog 1964), Arthur C. Clarke's story of the same name, later renamed "The Wind from the Sun" (Boy's Life, 1964). Sails of the...

read more

Exoplanet Moons in Formation?

We've been looking at circumstellar disks for quite some time, and teasing out images of actual planets within them, as witness HR 8799, where four exoplanets have been found. Just recently we saw imagery of a second world around PDS 70, both planets seen by direct imaging as they plowed through the disk of dust and gas surrounding a young star. All told, we now have more than a dozen exoplanets that have been directly imaged, though only two are in multi-planet systems. PDS 70b is sweeping out an observable gap in the disk. Image: PDS 70 is only the second multi-planet system to be directly imaged. Through a combination of adaptive optics and data processing, astronomers were able to cancel out the light from the central star (marked by a white star) to reveal two orbiting exoplanets. PDS 70 b (lower left) weighs 4 to 17 times as much as Jupiter while PDS 70 c (upper right) weighs 1 to 10 times as much as Jupiter. Credit: ESO and S. Haffert (Leiden Observatory). Now we learn that...

read more

1999 KW4: Close-Up of a Double Asteroid

I've argued in these pages that the interstellar effort will be driven as much by planetary protection as by the human exploratory impulse. I count the latter as crucial, but we often think of planetary protection as an immediate response to a specific problem. Let's place it, though, in context. Now that we're actively cataloging asteroids that come near the Earth, we have to know how and when to react if what looks like a dangerous trajectory turns into a deadly one. That mandates a continued level of observation and progress on mitigation technologies. A small nudge counts for a lot with an object that's a long way out, and we can't exclude, for example, long period comets in our thinking about planetary protection. So mitigation strategies that begin with changing the trajectory of a small, nearby object will grow with our capabilities to encompass more distant options, and that incentivizes the building of a defensive infrastructure that can operate deep into the Solar System....

read more

An Atomic Clock for Deep Space

NASA's Orbital Test Bed satellite is scheduled for launch via a SpaceX Falcon Heavy on June 22, with live streaming here. Although two dozen satellites from various institutions will be aboard the launch vehicle, the NASA OTB satellite itself houses multiple payloads on a single platform, including a modular solar array and a programmable satellite receiver. The component that's caught my eye, though, is the Deep Space Atomic Clock, a technology demonstrator that points to better navigation in deep space without reliance on Earth-based atomic clocks. Consider current methods of navigation. An accurate reading on a spacecraft's position depends on a measurement of the time it takes for a transmission to flow between a ground station and the vehicle. Collect enough time measurements, converting them to distance, and the spacecraft's trajectory is established. We know how to do atomic clocks well -- consider the US Naval Observatory's use of clocks reliant on the oscillation of atoms in...

read more

A Supernova Link to Ancient Wildfires?

Did huge fires several million years ago force a transition from forest to savanna in northeast Africa? It's a tantalizing thought, as such fires have been seen as a possible factor in driving the emergence of bipedalism in our remote ancestors. Adrian Melott (University of Kansas), who looks at the question in a new paper in the Journal of Geology, notes that our precursors would have adapted to such massive changes to their habitat, evolving to support life amidst the abundant grasslands that had replaced their former tree-filled environments. The conjecture about early hominins is receiving a lot of attention, but it plays only a small role in this paper, which focuses on the linkage between supernovae activity and the period in question. Just how do we make the call on a nearby supernova? Melott has been studying the question for some time, and refers back to 2016 studies of ancient seabed deposits of iron-60 isotopes that appeared in Nature. At that time, two supernovae events,...

read more

Explaining Luna’s Farside

The Moon’s farside used to be a convenient setting for wondrous things. After all, no one had ever seen it, setting the imagination free to insert everything from paradisaical getaways (think Shangri-La in space) to secret technologies or alien civilizations. The Soviet Luna 3 image of 1959 took the bloom off that particular rose, but we also learned through this and subsequent missions that farside really does have its differences from the familiar face we see. More craters, for one thing, and fewer of the dark plains we call maria, or ‘seas.’ We can throw in measurements made by the GRAIL mission (the Gravity Recovery and Interior Laboratory) in 2012. GRAIL was a NASA Discovery-class mission that performed gravitational field mapping of the Moon as a way of examining its internal structure, a set of two probes that worked by analyzing measured changes in distance between the two craft as small as one micron. We wound up with a map of our satellite’s gravitational field that led to...

read more

HD 163296: Emerging Insights into Circumstellar Disks

We should be glad to run into the unexpected when doing research, because things we hadn't foreseen often point to new understanding. That's certainly the case with infant planetary systems as observed through the circumstellar disks of gas and dust surrounding young stars. ALMA (the Atacama Large Millimeter/submillimeter Array) has been central to the study of such targets. An array of 66 radio telescopes in Chile's Atacama Desert, the facility works at millimeter and submillimeter wavelengths to provide detailed imaging of emerging systems. Because it has been revealing a variety of small-scale structures within circumstellar disks, ALMA is giving us insights into planet formation as we observe gaps, rings and spiral arms and their interactions with young planets. This is where the unexpected comes in. For researchers looking at a 5 million year old star called HD 163296 are seeing an unusual amount of dust, more than 300 times the mass of the Earth, despite the detection of at...

read more

Into the Neptunian Desert

A planet labeled NGTS-4b has turned up in a data space where astronomers had not expected it, the so-called ‘Neptunian desert.’ Three times Earth radius and about 20 percent smaller than Neptune, the world was discovered with data from the Next-Generation Transit Survey (NGTS), which specializes in transiting worlds around bright stars, by researchers from the University of Warwick. It turns out to be a scorcher, with temperatures in the range of 1,000 degrees Celsius. NGTS-4b is 20 times as massive as the Earth, and its orbit takes it around its star, a K-dwarf 920 light years out, every 1.3 days. The planet is getting attention not so much because of what it is but where it is. Lead author Richard West (University of Warwick) comments: "This planet must be tough - it is right in the zone where we expected Neptune-sized planets could not survive. It is truly remarkable that we found a transiting planet via a star dimming by less than 0.2% - this has never been done before by...

read more

Triton: Insights into an Icy Surface

Al Jackson reminds me in a morning email that today is the 100th anniversary of the Arthur Eddington expedition that demonstrated the validity of Einstein’s General Relativity. The bending of starlight could be observed by looking at the apparent position of stars in the vicinity of the Sun during a solar eclipse. Eddington’s team made the requisite observations at Principe, off the west coast of Africa, and the famous New York Times headline would result: “Lights All Askew in the Heavens . . . Einstein Theory Triumphs.” Al also sent along a copy of the original paper in Philosophical Transactions of the Royal Society of London, where authorship is given as "F. W. Dyson, A. S. Eddington and C. Davidson." This created an agreeable whimsy: I imagined the evidently ageless Freeman Dyson continually traveling through time to provide his insights at major achievements like this, but the reality is that this Dyson was Frank Dyson, then Britain’s Astronomer Royal. Ron Cowen does a wonderful...

read more

A Comet Family with Implications for Earth’s Water

'Hyperactive' comets tend to call attention to themselves. Take Comet Hartley 2 (103P/Hartley), which was visited by the EPOXI mission (formerly Deep Impact) in November of 2010. Three months of imaging and 117,000 images and spectra showed us just how much water and carbon dioxide the little comet was producing in the form of asymmetrical jets, a level of cometary activity that made the comet, in the words of one researcher, 'skittish.' It was, said EPOXI project manager Tim Larson at the time, "moving around the sky like a knuckleball." Image: Comet Hartley 2, in every sense of the term a moving target. Credit: NASA. Nor is Hartley 2 alone. Scientists had a good look at comet 46P/Wirtanen from the SOFIA airborne observatory [Stratospheric Observatory for Infrared Astronomy] last December. Here again we see a pattern of hyperactivity, with a comet releasing more water than the surface area of the nucleus would seem to allow. The excess draws on an additional source of water vapor in...

read more

Dataset Mining Reveals New Planets

I’m always interested in hearing about new ways to mine our abundant datasets. Who knows how many planets may yet turn up in the original Kepler and K2 data, once we’ve applied different algorithms crafted to tease out their evanescent signatures. On the broader front, who knows how long we’ll be making new discoveries with the Cassini data, gathered in such spectacular fashion over its run of orbital operations around Saturn. And we can anticipate that, locked up in archival materials from our great observatories, various discoveries still lurk. Assuming, of course, we know how to find them and, just as important, how to confirm that we’re not just looking at noise. What scientists at the Max Planck Institute for Solar System Research (MPS), the Georg August University of Göttingen, and the Sonneberg Observatory have come up with is 18 new planets roughly of Earth size that they’ve dug out of K2, looking at 517 stars that, on the basis of earlier analysis, had already been...

read more

Is High Definition Astrometry Ready to Fly?

In a white paper submitted to the Decadal Survey on Astronomy and Astrophysics (Astro2020), Philip Horzempa (LeMoyne College) suggests using technology originally developed for the NASA Space Interferometry Mission (SIM), along with subsequent advances, in a mission designed to exploit astrometry as an exoplanet detection mode. I'm homing in on astrometry itself in this post rather than the mission concept, for the technique may be coming into its own as an exoplanet detection method, and I'm interested in new ways to exploit it. Astrometry is all about refining our measurement of a star's position in the sky. When I talk to people about detecting exoplanets, I find that many confuse astrometry with radial velocity, for in loose explanatory terminology, both refer to measuring the 'wobble' a planet induces on a star. But radial velocity examines Doppler effects in a star's spectrum as the star moves toward and then away from us, while astrometry looks for tiny changes in the position...

read more

Insulating a Plutonian Ocean

An ocean inside Pluto would have implications for many frozen moons and dwarf planets, not to mention exoplanets where conditions at the surface are, like Pluto, inimical to life as we know it. But while a Plutonian ocean has received considerable study (see, for example, Francis Nimmo's work as discussed in Pluto: Sputnik Planitia Gives Credence to Possible Ocean), working out the mechanisms for liquid ocean survival over these timeframes and conditions has proven challenging. A new paper now suggests a possible path. Shunichi Kamata of Hokkaido University led the research, which includes contributions from the Tokyo Institute of Technology, Tokushima University, Osaka University, Kobe University, and the University of California, Santa Cruz. At play are computer simulations, reported in Nature Geosciences, that offer evidence for the potential role of gas hydrates (gas clathrates) in keeping a subsurface ocean from freezing. At the center of the work, as in so much recently written...

read more

New Horizons: Results and Interpretations

Another reminder that the days of the lone scientist making breakthroughs in his or her solitary lab are today counterbalanced by the vast team effort required for many experiments to continue. Thus the armies involved in gravitational wave astronomy, and the demands for big money and large populations of researchers at our particle accelerators. So, too, with space exploration, as the arrival of early results from New Horizons in the journals is making clear. We now have a paper on our mission to Pluto/Charon and the Kuiper Belt that bears the stamp of more than 200 co-authors, representing 40 institutions. How could it be otherwise if we are to credit the many team members who played a role? As the New Horizons site notes: "[Mission principal investigator Alan] Stern's paper includes authors from the science, spacecraft, operations, mission design, management and communications teams, as well as collaborators, such as contributing scientist and stereo imaging specialist (and...

read more

A Neutrino Beam Beacon

If you want to look for possible artifacts of advanced civilizations, as do those practicing what is now being called Dysonian SETI, then it pays to listen to the father of the field. My friend Al Jackson has done so and offers a Dyson quote to lead off his new paper: "So the first rule of my game is: think of the biggest possible artificial activities with limits set only by the laws of physics and look for those." Dyson wrote that in a 1966 paper that repays study today (citation below). Its title: The Search for Extraterrestrial Technology." Dysonian SETI is a big, brawny zone where speculation is coin of the realm and the imagination is encouraged to be pushed to the limit. Jackson is intrigued, as are so many of us, with the idea of using the Sun's gravitational lens to make observations of other stars and their planets. Our recent email conversation brought up the name of Von Eshleman, the Stanford electrical engineer and pioneer in planetary and radio sciences who died two...

read more

Survivors: White Dwarf Planets

The term 'destruction radius' around a star sounds like something out of a generic science fiction movie, probably one with lots of laser battles and starship crews dressed in capes. It's a descriptive phrase as used in this University of Warwick (UK) news release, but let's go with 'Roche radius' instead. Dimitri Veras, a physicist at the university, probes the term in the context of white dwarfs in a new paper for Monthly Notices of the Royal Astronomical Society. Veras and collaborators are looking at what happens after the challenging transition between red giant and white dwarf, a time when planets will be in high turmoil. The idea is to model the tidal forces that occur once a star collapses into a super-dense white dwarf, blowing away its outer layers in the process. We see the clear potential for dragging planets into new orbits, with some pushed out of their stellar systems entirely. The Roche radius, or limit, is the distance from the star where a self-gravitating object...

read more

Toward a High-Velocity Astronomy

Couple the beam from a 100 gigawatt laser with a single-layer lightsail and remarkable things can happen. As envisioned by scientists working with Breakthrough Starshot, a highly reflective sail made incredibly thin -- perhaps formed out of graphene and no thicker than a single molecule -- could attain speeds of 20 percent of c. That's good enough to carry a gram-scale payload to the nearest stars, the Alpha Centauri triple system, with a cruise time of 20 years, for a flyby followed by an agonizingly slow but eventually complete data return. A key element in the concept, as we saw yesterday, is the payload, which could take advantage of microminiaturization trends that, assuming they continue, could make a functional spacecraft smaller than a cell phone. The first iterations of such a 'starchip' are being tested. The Starshot work has likewise caught the attention of Bing Zhang, a professor of astrophysics at the University of Nevada, Las Vegas. Working with Kunyang Li (Georgia...

read more

Breakthrough Starshot: Early Testing of ‘Wafer-craft’ Design

Recent tests of a 'wafer-craft', an early prototype for what may one day be the 'starchip' envisioned by scientists involved with the Breakthrough Starshot project, have been successful. The work grows out of a NASA-funded effort led by Philip Lubin (UC Santa Barbara), whose investigations into large scale directed energy systems began in 2009. Lubin went on to perform multiple studies for NASA's Innovative Advanced Concepts program developing the idea that would become known as DEEP-IN (Directed Energy Propulsion for Interstellar Exploration). His NIAC Phase 1 report studied as one option beamed propulsion driving a wafer-scale spacecraft. Renamed Starlight, the proposal went on to Phase II funding as well as support from the private sector. A subsequent review by Breakthrough Initiatives led to endorsement of the concept within its Breakthrough Starshot effort. Breakthrough is devoting $100 million to studying the viability of sending a 'starchip' to a nearby star such as Proxima...

read more

Europa’s Oxygen and Aerobic Life

Few destinations in the Solar System have excited the imagination as much as Europa. Could a deep ocean beneath the ice support a biosphere utterly unlike our own? If so, we could be looking at a second emergence of life unrelated to anything on Earth, with implications for the likelihood of life throughout the cosmos. But so much depends on what happens as Europa's surface and ocean interact. Alex Tolley, a fixture here on Centauri Dreams, today looks at new work suggesting the deeply problematic nature of Europa's ocean from the standpoint of astrobiology. He also offers an entertaining glimpse at what Europa might become. by Alex Tolley Image: Plume on Europa's Surface. Credit: NASA With the abundance of newly discovered exoplanets, a fraction of them being both rocky and in their habitable zones (HZ), the excitement at finding life on such worlds is increasing. Given the ambiguous results of the attempt to detect life on Mars with the Viking experiments in 1976 and the subsequent...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives