Dataset Mining Reveals New Planets

I’m always interested in hearing about new ways to mine our abundant datasets. Who knows how many planets may yet turn up in the original Kepler and K2 data, once we’ve applied different algorithms crafted to tease out their evanescent signatures. On the broader front, who knows how long we’ll be making new discoveries with the Cassini data, gathered in such spectacular fashion over its run of orbital operations around Saturn. And we can anticipate that, locked up in archival materials from our great observatories, various discoveries still lurk. Assuming, of course, we know how to find them and, just as important, how to confirm that we’re not just looking at noise. What scientists at the Max Planck Institute for Solar System Research (MPS), the Georg August University of Göttingen, and the Sonneberg Observatory have come up with is 18 new planets roughly of Earth size that they’ve dug out of K2, looking at 517 stars that, on the basis of earlier analysis, had already been...

read more

Is High Definition Astrometry Ready to Fly?

In a white paper submitted to the Decadal Survey on Astronomy and Astrophysics (Astro2020), Philip Horzempa (LeMoyne College) suggests using technology originally developed for the NASA Space Interferometry Mission (SIM), along with subsequent advances, in a mission designed to exploit astrometry as an exoplanet detection mode. I'm homing in on astrometry itself in this post rather than the mission concept, for the technique may be coming into its own as an exoplanet detection method, and I'm interested in new ways to exploit it. Astrometry is all about refining our measurement of a star's position in the sky. When I talk to people about detecting exoplanets, I find that many confuse astrometry with radial velocity, for in loose explanatory terminology, both refer to measuring the 'wobble' a planet induces on a star. But radial velocity examines Doppler effects in a star's spectrum as the star moves toward and then away from us, while astrometry looks for tiny changes in the position...

read more

Insulating a Plutonian Ocean

An ocean inside Pluto would have implications for many frozen moons and dwarf planets, not to mention exoplanets where conditions at the surface are, like Pluto, inimical to life as we know it. But while a Plutonian ocean has received considerable study (see, for example, Francis Nimmo's work as discussed in Pluto: Sputnik Planitia Gives Credence to Possible Ocean), working out the mechanisms for liquid ocean survival over these timeframes and conditions has proven challenging. A new paper now suggests a possible path. Shunichi Kamata of Hokkaido University led the research, which includes contributions from the Tokyo Institute of Technology, Tokushima University, Osaka University, Kobe University, and the University of California, Santa Cruz. At play are computer simulations, reported in Nature Geosciences, that offer evidence for the potential role of gas hydrates (gas clathrates) in keeping a subsurface ocean from freezing. At the center of the work, as in so much recently written...

read more

New Horizons: Results and Interpretations

Another reminder that the days of the lone scientist making breakthroughs in his or her solitary lab are today counterbalanced by the vast team effort required for many experiments to continue. Thus the armies involved in gravitational wave astronomy, and the demands for big money and large populations of researchers at our particle accelerators. So, too, with space exploration, as the arrival of early results from New Horizons in the journals is making clear. We now have a paper on our mission to Pluto/Charon and the Kuiper Belt that bears the stamp of more than 200 co-authors, representing 40 institutions. How could it be otherwise if we are to credit the many team members who played a role? As the New Horizons site notes: "[Mission principal investigator Alan] Stern's paper includes authors from the science, spacecraft, operations, mission design, management and communications teams, as well as collaborators, such as contributing scientist and stereo imaging specialist (and...

read more

A Neutrino Beam Beacon

If you want to look for possible artifacts of advanced civilizations, as do those practicing what is now being called Dysonian SETI, then it pays to listen to the father of the field. My friend Al Jackson has done so and offers a Dyson quote to lead off his new paper: "So the first rule of my game is: think of the biggest possible artificial activities with limits set only by the laws of physics and look for those." Dyson wrote that in a 1966 paper that repays study today (citation below). Its title: The Search for Extraterrestrial Technology." Dysonian SETI is a big, brawny zone where speculation is coin of the realm and the imagination is encouraged to be pushed to the limit. Jackson is intrigued, as are so many of us, with the idea of using the Sun's gravitational lens to make observations of other stars and their planets. Our recent email conversation brought up the name of Von Eshleman, the Stanford electrical engineer and pioneer in planetary and radio sciences who died two...

read more

Survivors: White Dwarf Planets

The term 'destruction radius' around a star sounds like something out of a generic science fiction movie, probably one with lots of laser battles and starship crews dressed in capes. It's a descriptive phrase as used in this University of Warwick (UK) news release, but let's go with 'Roche radius' instead. Dimitri Veras, a physicist at the university, probes the term in the context of white dwarfs in a new paper for Monthly Notices of the Royal Astronomical Society. Veras and collaborators are looking at what happens after the challenging transition between red giant and white dwarf, a time when planets will be in high turmoil. The idea is to model the tidal forces that occur once a star collapses into a super-dense white dwarf, blowing away its outer layers in the process. We see the clear potential for dragging planets into new orbits, with some pushed out of their stellar systems entirely. The Roche radius, or limit, is the distance from the star where a self-gravitating object...

read more

Toward a High-Velocity Astronomy

Couple the beam from a 100 gigawatt laser with a single-layer lightsail and remarkable things can happen. As envisioned by scientists working with Breakthrough Starshot, a highly reflective sail made incredibly thin -- perhaps formed out of graphene and no thicker than a single molecule -- could attain speeds of 20 percent of c. That's good enough to carry a gram-scale payload to the nearest stars, the Alpha Centauri triple system, with a cruise time of 20 years, for a flyby followed by an agonizingly slow but eventually complete data return. A key element in the concept, as we saw yesterday, is the payload, which could take advantage of microminiaturization trends that, assuming they continue, could make a functional spacecraft smaller than a cell phone. The first iterations of such a 'starchip' are being tested. The Starshot work has likewise caught the attention of Bing Zhang, a professor of astrophysics at the University of Nevada, Las Vegas. Working with Kunyang Li (Georgia...

read more

Breakthrough Starshot: Early Testing of ‘Wafer-craft’ Design

Recent tests of a 'wafer-craft', an early prototype for what may one day be the 'starchip' envisioned by scientists involved with the Breakthrough Starshot project, have been successful. The work grows out of a NASA-funded effort led by Philip Lubin (UC Santa Barbara), whose investigations into large scale directed energy systems began in 2009. Lubin went on to perform multiple studies for NASA's Innovative Advanced Concepts program developing the idea that would become known as DEEP-IN (Directed Energy Propulsion for Interstellar Exploration). His NIAC Phase 1 report studied as one option beamed propulsion driving a wafer-scale spacecraft. Renamed Starlight, the proposal went on to Phase II funding as well as support from the private sector. A subsequent review by Breakthrough Initiatives led to endorsement of the concept within its Breakthrough Starshot effort. Breakthrough is devoting $100 million to studying the viability of sending a 'starchip' to a nearby star such as Proxima...

read more

Europa’s Oxygen and Aerobic Life

Few destinations in the Solar System have excited the imagination as much as Europa. Could a deep ocean beneath the ice support a biosphere utterly unlike our own? If so, we could be looking at a second emergence of life unrelated to anything on Earth, with implications for the likelihood of life throughout the cosmos. But so much depends on what happens as Europa's surface and ocean interact. Alex Tolley, a fixture here on Centauri Dreams, today looks at new work suggesting the deeply problematic nature of Europa's ocean from the standpoint of astrobiology. He also offers an entertaining glimpse at what Europa might become. by Alex Tolley Image: Plume on Europa's Surface. Credit: NASA With the abundance of newly discovered exoplanets, a fraction of them being both rocky and in their habitable zones (HZ), the excitement at finding life on such worlds is increasing. Given the ambiguous results of the attempt to detect life on Mars with the Viking experiments in 1976 and the subsequent...

read more

Haumea: Probing an Outer System Ring

I rarely get the chance to talk about the exotic dwarf planet Haumea, but it’s a personal favorite when it comes to the outer Solar System. That’s because of its odd shape (a bit like an American football), evidently the result of a catastrophic collision, which makes it an interesting object for close study if we can get a probe to it to examine its composition. Back in 2009, Joel Poncy and colleagues at Thales Alenia Space in France went to work on a fast orbiter mission, an extraordinarily tough challenge that would push our propulsion technologies hard. But Haumea would surely repay close study. A rapid rotator (3.9 hours, itself a likely indicator of a turbulent past), it’s a dwarf world with a ring as well as two moons, the larger of which, Hi’iaka, is some 300 kilometers in diameter. Add to this the fact that Haumea is quite reflective, indicating a surface covered with crystalline water ice. We know we can get a probe to Haumea, but orbiting it is an order of magnitude...

read more

Planetary Interiors a Key to Habitability

Interdisciplinary approaches to new data offer a robust way to see past the conventions of a specialized field, noting connections that provide perspective and deepen understanding. That idea is sound across many disciplines, but it is getting new emphasis with an essay in Science asking whether we have not been too blinkered in our approach to astrobiology. After all, reams have been written about studying exoplanet atmospheres for biomarkers, but shouldn't we be studying how atmospheres couple to planetary interiors? "We need a better understanding of how a planet's composition and interior influence its habitability, starting with Earth," says Anat Shahar (Carnegie Institution for Science), one of the paper's four authors. "This can be used to guide the search for exoplanets and star systems where life could thrive, signatures of which could be detected by telescopes." Thus the paper's call for merging data from astronomical observations, mathematical modeling and simulations, and...

read more

Evidence for an Early Neutron Star Merger Near the Solar System

Massive elements can build up in celestial catastrophes like supernovae, with the rapid-, or r-process, producing neutrons at a high rate as elements much heavier than lead or even uranium emerge. But we’re learning that such events happen not just in supernovae but also in neutron star mergers, which are thought to occur only a few times per million years in the Milky Way. A new paper looks at meteorites from the early Solar System to study what the decay of their radioactive isotopes can tell us about the period in which they were created. Such isotopes have half-lives shorter than 100 million years, but we can determine their abundances in the early Solar System through meteorite studies like these. What Szabolcs Márka (Columbia University) and Imre Bartos (University of Florida) have done is to study how two of the short-lived r-process isotopes were produced, using simulations of neutron star mergers in the Milky Way to calculate the abundances of specific radioactive elements....

read more

“An Intellectual Carrot – The Mind Boggles!” Dissecting The Thing from Another World

Centauri Dreams' resident movie critic turns his attention to a personal favorite from the canon of science fiction films. My own memories of The Thing from Another World go back to late Saturday night black-and-white TV, where I first saw the chilling tale as a boy. The scene where the team fans out on the ice as they try to figure out what it is that is frozen down there still puts a chill down my spine. Who knew at the time that The Thing himself was James Arness, early in his career arc toward Gunsmoke's Matt Dillon? Larry gives us all the details, including reflections on the film's significance in its time and the questions it raises about our attitudes toward the unknown. Don't be surprised to find a collection of Larry's Centauri Dreams essays making its way into book form one of these days. by Larry Klaes Ah, aliens. For some humans, they are the conquering interstellar warriors of some tyrannical Galactic Empire. To others, they are angelic saviors just waiting to uplift...

read more

99942 Apophis: The Value of a Close Approach

The approach of the asteroid 99942 Apophis in April of 2029 offers an opportunity to study a sizeable asteroid through both radar and optical telescopes. Marina Brozovi?, a radar scientist at the Jet Propulsion Laboratory, points out that radar studies of the object might resolve surface details that are no more than a few meters in size. No surprise, then, that Apophis is the subject of much discussion at the 2019 Planetary Defense Conference in College Park, Maryland. This is the same conference at which NASA Administrator Jim Bridenstine warned about the critical nature of planetary defense, noting the Chelyabinsk event in 2013 that delivered some 30 times the energy of the Hiroshima bomb. NASA has contracted with SpaceX to provide launch services for its Double Asteroid Redirection Test (DART), which is expected to launch in 2021 via a SpaceX Falcon 9 and test asteroid deflection through high-speed collision. DART’s target will be the tiny moon of an asteroid called Didymos,...

read more

Corridor of Ice Identified on Titan

What an interesting thing Titan's atmosphere turns out to be. A fine haze produced by sunlight breaking apart methane molecules settles continuously to the surface, leaving organic liquid and solid sediments. Titan also has large lakes, but these contain about a third of the necessary methane, available through evaporation, to replenish that atmosphere, which should be depleted over geological time scales. What produces Titan's supply of methane? It was to answer that question that Caitlin Griffith (University of Arizona Lunar and Planetary Laboratory) and colleagues embarked on a study of cryovolcano activity on Titan. Cryovolcanoes erupt not with molten rock but volatiles like water or methane, and thus could provide an answer if they are venting methane found in subsurface reservoirs. A feature on Titan's surface called Sotra shows cryovolcanic features that imply past icy flows. Image: A giant of a moon appears before a giant of a planet. Titan, Saturn's largest moon, measures...

read more

Refined Parameters for an Expanding Universe

When it comes to matching what we know of the early universe, as seen in the Cosmic Microwave Background (CMB), with what we see today, astronomers have their work cut out for them. Edwin Hubble could demonstrate that the universe was expanding by studying the redshift of galaxies as they receded, but the rate of that expansion has been controversial. Now we have new work based on data from the Hubble Space Telescope as well as the Araucaria Project (about which more in a moment) that is helping us refine the Hubble constant (H0) to tighten the parameters on how the universe's expansion is accelerating. The result: The universe is expanding some 9 percent faster than we would expect based on observations by the European Space Agency's Planck satellite, which mined data from the CMB from 380,000 years after the Big Bang. Exactly what drives this accelerated expansion -- an enhanced interaction between matter and something we have yet to detect, 'dark' matter, or the as yet unknown...

read more

Probing Parenago: A Dialogue on Stellar Discontinuity

The publication of a paper called "New Features of Parenago's Discontinuity from Gaia DR1 Data" by V. V. Vityazev and colleagues brought us a new look at an unusual observation. Parenago's Discontinuity refers to the fact that red, cooler stars move faster in the direction of galactic rotation than blue, hotter stars, based on Hipparcos data. But is the phenomenon just a chance, local observation? Fortunately, a much larger dataset from the Gaia mission has now become available, and it is this that the Vityazev paper addresses in terms of Parenago's finding. The following dialogue between Greg Matloff and Alex Tolley goes to work on the Vityazev document. Dr. Matloff has pointed to the Discontinuity as a possible marker of consciousness among low temperature stars, where molecular bonds can form. Could motion be a matter of agency in such stars? Greg explored the idea in his book StarLight, StarBright. Now Alex digs into the Vityazev paper and questions whether Greg is right that his...

read more

An Earth-sized Planet for TESS

If Kepler's task was to give us a first statistical cut at the distribution of exoplanets in the galaxy, TESS (Transiting Exoplanet Survey Satellite) has a significantly different brief, to use its four cameras to study stars that are near and bright. Among these we may hope to find the first small, rocky planets close enough that their atmospheres may be examined by space telescopes and the coming generation of extremely large telescopes (ELTs) on Earth. Thus the news that TESS has found its first planet of Earth size is heartening, even if the newly found world orbiting HD 21749 is in a tight 7.8 day orbit, making it anything but clement for life. What counts, of course, is the demonstrated ability of this mission to locate the small worlds we had hoped to find. Diana Dragomir is a postdoc at MIT's Kavli Institute for Astrophysics and Space Research, as well as lead author on the paper describing the latest TESS planet: "Because TESS monitors stars that are much closer and...

read more

New Planet Detected in Circumbinary System

The transit method has proven invaluable for exoplanet detection, as the runaway success of the Kepler/K2 mission demonstrates. But stars where planets have been detected with this method are still capable of revealing further secrets. Consider Kepler-47. Here we have a circumbinary system some 3340 light years away in the direction of the constellation Cygnus, and as we are now learning about circumbinaries -- planets that orbit two stars -- the alignment of the orbital plane of the planet is likely to change with time. Let's pause for a moment on the value of the detection method. Transits detected in the lightcurve have helped us identify 10 transiting circumbinary planets, with the benefit of allowing astronomers to measure the planets' radius even as variations in the duration of transits and deviations from the expected timing of the transits establish the circumbinary orbit. At Kepler-47, we're looking at the only known multi-planet circumbinary system. Moreover, the orbital...

read more

Huge White Light Flare on a Tiny Star

About 250 light years away there is a faint object that is on the borderline between brown dwarf and star. Only a tenth of the radius of our Sun, ULAS J224940.13-011236.9 was actually too faint for most telescopes to observe until a huge flare lit it up, turning this L dwarf, among the lowest mass objects that can still be considered a star, 10,000 times brighter than it was before. Very cool compared to the average red dwarf, L dwarfs emit radiation primarily in the infrared. But this story also has to do with visible light, and the question of how such a small object can produce such a powerful explosion. This was a ‘white light’ flare, a type of flare that displays associated brightening in the visible light spectrum. Astronomers believe flares are driven by magnetic energy, the sudden release of which can cause charged particles to heat plasma. In this case the resulting optical, ultraviolet and X-ray radiation was copious. James Jackman, a PhD student in physics at the...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. Human comments only, please -- cut and paste from AI will not be acceptable. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives