It's good now and then to let the imagination soar. Don Wilkins has been poking into the work of Carlo Rovelli at the Perimeter Institute, where the physicist and writer explores unusual ideas, though perhaps none so exotic as white holes. Do they exist, and are there ways to envision a future technology that can exploit them? A frequent contributor to Centauri Dreams, Don is an adjunct instructor of electronics at Washington University, St. Louis, where he continues to track research that may one day prove relevant to interstellar exploration. A white hole offers the prospect of even a human journey to another star, but turning these hypothesized objects into reality remains an exercise in mathematics, although as the essay explains, there are those exploring the possibilities even now. by Don Wilkins Among the many concepts for human interstellar travel, one of the more provocative is an offspring of Einstein's theories, the bright twin of the black hole, the white hole. The...
Alone in the Cosmos?
We live in a world that is increasingly at ease with the concept of intelligent extraterrestrial life. The evidence for this is all around us, but I’ll cite what Louis Friedman says in his new book Alone But Not Lonely: Exploring for Extraterrestrial Life (University of Arizona Press, 2023). When it polled in the United States on the question in 2020, CBS News found that fully two-thirds of the citizenry believe not only that life exists on other planets, but that it is intelligent. That this number is surging is shown by the fact that in polling 10 years ago, the result was below 50 percent. Friedman travels enough that I’ll take him at his word that this sentiment is shared globally, although the poll was US-only. I’ll also agree that there is a certain optimism that influences this belief. In my experience, people want a universe filled with civilizations. They do not want to contemplate the loneliness of a cosmos where there is no one else to talk to, much less one where valuable...
Open Cluster SETI
Globular clusters, those vast ‘cities of stars’ that orbit our galaxy, get a certain amount of traction in SETI circles because of their age, dating back as they do to the earliest days of the Milky Way. But as Henry Cordova explains below, they’re a less promising target in many ways than the younger, looser open clusters which are often home to star formation. Because it turns out that there are a number of open clusters that likewise show considerable age. A Centauri Dreams regular, Henry is a retired map maker and geographer now living in southeastern Florida and an active amateur astronomer. Here he surveys the landscape and points to reasons why older open clusters are possible homes to life and technologies. Yet they’ve received relatively short shrift in the literature exploring SETI possibilities. Is it time for a new look at open clusters? by Henry Cordova If you're looking for signs of extra-terrestrial intelligence in the cosmos, whether it be radio signals or optical...
Alien Life or Chemistry? A New Approach
Working in the field has its limitations, as Alex Tolley reminds us in the essay that follows, but at least biologists have historically been on the same planet with their specimens. Today’s hottest news would be the discovery of life on another world, as we saw in the brief flurries over the Viking results in 1976 or the Martian meteorite ALH84001. We rely, of course, on remote testing and will increasingly count on computer routines that can make the fine distinctions needed to choose between biotic and abiotic reactions. A new technique recently put forward by Robert Hazen and James Cleaves holds great promise. Alex gives it a thorough examination including running tests of his own to point to the validity of the approach. One day using such methods on Mars or an ice giant moon may confirm that abiogenesis is not restricted to Earth, a finding that would have huge ramifications not just for our science but also our philosophy. by Alex Tolley Perseverance rover on Mars - composite...
Data Return from Proxima Centauri b
The challenges involved in sending gram-class probes to Proxima Centauri could not be more stark. They’re implicit in Kevin Parkin’s analysis of the Breakthrough Starshot system model, which ran in Acta Astronautica in 2018 (citation below). The project settled on twenty percent of the speed of light as a goal, one that would reach Proxima Centauri b well within the lifetime of researchers working on the project. The probe mass is 3.6 grams, with a 200 nanometer-thick sail some 4.1 meters in diameter. The paper we’ve been looking at from Marshall Eubanks (along with a number of familiar names from the Initiative for Interstellar Studies including Andreas Hein, his colleague Adam Hibberd, and Robert Kennedy) accepts the notion that these probes should be sent in great numbers, and not only to exploit the benefits of redundancy to manage losses along the way. A “swarm” approach in this case means a string of probes launched one after the other, using the proposed laser array in the...
Reaching Proxima b: The Beauty of the Swarm
NIAC’s award of a Phase I grant to study a ‘swarm’ mission to Proxima Centauri naturally ties to Breakthrough Starshot, which continues its interstellar labors, though largely out of the public eye. The award adds a further research channel for Breakthrough’s ideas, and a helpful one at that, for the NASA Innovative Advanced Concepts program supports early stage technologies through three levels of funding, so there is a path for taking these swarm ideas further. An initial paper on swarm strategies was indeed funded by Breakthrough and developed through Space Initiatives and the UK-based Initiative for Interstellar Studies. Centauri Dreams readers are by now familiar with my enthusiasm for swarm concepts, and not just for interstellar purposes. Indeed, as we develop the technologies to send tiny spacecraft in their thousands to remote targets, we’ll be testing the idea out first through computer simulation but then through missions within our own Solar System. Marshall Eubanks, the...
Galactic ‘Nature Preserves’ over Deep Time
Speculating about the diffusion of intelligent species through the galaxy, as we've been doing these past few posts, is always jarring. I go back to the concept of ‘deep time,’ which is forced on us when we confront years in their billions. I can’t speak for anyone else, but for me thinking on this level is closer to mathematics than philosophy. I can accept a number like 13.4 × 10⁹ years (the estimate for the age of globular cluster NGC 6397 and a pointer to the Milky Way’s age) without truly comprehending how vast it is. As biological beings, a century pushes us to the limit. What exactly is an aeon? NGC 6397 and other globular clusters are relevant because these ancient stellar metropolises are the oldest large-scale populations in the Milky Way. But I’m reminded that even talking about the Milky Way can peg me as insufferably parochial. David Kipping takes me entirely out of this comparatively ‘short-term’ mindset by pushing the limits of chronological speculation into a future...
Can the ‘Zoo Hypothesis’ Be Saved?
If we were to find life other than Earth’s somewhere else in the Solar System, the aftershock would be substantial. After all, a so-called ‘second genesis’ would confirm the common assumption that life forms often, and in environments that range widely. The implications for exoplanets are obvious, as would be the conclusion that the Milky Way contains billions of living worlds. The caveat, of course, is that we would have to be able to rule out the transfer of life between planets, which could make Mars, say, controversial. But find living organisms on Titan and the case is definitively made. Ian Crawford and Dirk Schulze-Makuch point out in their new paper on the Fermi question and the ‘zoo hypothesis’ that this issue of abiogenesis could be settled relatively soon as our planetary probes gain in sophistication. We could settle it within decades if we found definitive biosignatures in an exoplanet atmosphere, but here my skepticism kicks in. My...
Life Elsewhere? Relaxing the Copernican Principle
Most people I know are enthusiastic about the idea that other intelligent races exist in the galaxy. Contact is assumed to be an inevitable and probably profoundly good thing, with the exchange of knowledge possibly leading to serious advances in our own culture. This can lead to a weighting of the discourse in favor of our not being alone. The ever popular Copernican principle swings in: We can’t be unique, can we? And thus every search that comes up empty is seen as an incentive to try still other searches. I’m going to leave the METI controversy out of this, as it’s not my intent to question how we should handle actual contact with ETI. I want to step back further from the question. What should we do if we find no trace of extraterrestrials after not just decades but centuries? I have no particular favorite in this race. To me, a universe teeming with life is fascinating, but a universe in which we are alone is equally provocative. Louis Friedman’s new book Alone But Not Lonely...
Holiday Thoughts on Deep Time
An old pal from high school mentioned in an email the other day that he had an interest in Adam Frank’s work, which we’ve looked at in these pages a number of times. Although my most recent post on Frank involves a 2022 paper on technosignatures written with Penn State’s Jason Wright, my friend was most intrigued by a fascinating 2018 paper Frank wrote for the International Journal of Astrobiology (citation below). The correspondence triggered thoughts of other, much earlier scientists, particularly of Charles Lyell’s Principles of Geology (1830-1833), which did so much to introduce the concept of ‘deep time’ to Europe and played a role in Darwin’s work. Let’s look at both authors, with a nod as well to James Hutton, who largely originated the concept of deep time in the 18th Century. Adam Frank is an astrophysicist at the University of Rochester, and one of those indispensable figures who meshes his scientific specialization (stellar evolution) with a broader view that encompasses...
A Novel Strategy for Catching Up to an Interstellar Object
Reaching ‘Oumuamua through some kind of statite technology, an idea we’ve been kicking around recently, brings up the interesting work of Richard Linares at MIT, who has been working on a “dynamic orbital slingshot” for rendezvous with future objects from the interstellar depths (ISOs). Linares received a Phase I grant from the NASA Innovative Advanced Concepts (NIAC) Program to pursue the idea of a network of statites on sentry duty, any one of which could release the stored energy of the sail to enter a trajectory that would take it to a flyby of an object entering our system on a hyperbolic orbit. The concept is simplicity itself, once you realize that a statite balances the pressure of solar photons against the Sun’s gravitational pull, and essentially hovers in place. As I mentioned when covering Greg Matloff and Les Johnson’s paper on using statites to achieve fast rectilinear trajectories to reach interstellar interlopers, Robert Forward was the one who came up with the idea...
Forbidden Worlds? Theory Clashes with Observation
Back before we knew for sure there were planets around other stars, the universe seemed likely to be ordered. If planet formation was common, then we'd see systems more or less like our own, with rocky inner worlds and gas giants in outer orbits. And if planet formation was a fluke, we'd find few planets to study. All that has, of course, been turned on its head by the abundant discoveries of exoplanets galore. And our Solar System turns out to be anything but a model for the rest of the galaxy. In today's essay, Don Wilkins looks at several recent discoveries that challenge planet formation theory. We can bet that the more we probe the Milky Way, the more we'll find anomalies that challenge our preconceptions. by Don Wilkins The past few decades have not been easy on planet formation theories. Concepts formed on the antiquated Copernican speculation, the commonality of star systems identical to the Solar System, have given way to the strangeness and variety uncovered by Kepler,...
Interstellar Precursor? The Statite Solution
What an interesting object Methone is. Discovered by the Cassini imaging team in 2004 along with the nearby Pallene, this moon of Saturn is a scant 1.6 kilometers in radius, orbiting between Mimas and Enceladus. In fact, Methone, Pallene and another moon called Anthe all orbit at similar distances from Saturn and are dynamically jostled by Mimas. What stands out about Methone is first of all its shape and, perhaps even more strikingly, the smoothness of its surface. We’d like to know what produces this kind of object and would also like to retrieve imagery of both Pallene and Anthe. If something this strange has equally odd companions, is there something about its relationship with both nearby moons and Saturn’s rings that can produce this kind of surface? Image: It's difficult not to think of an egg when looking at Saturn's moon Methone, seen here during a Cassini flyby of the small moon. The relatively smooth surface adds to the effect created by the oblong shape....
SETI: Musings on the Barrow Scale
John Barrow has been on my mind these past few days, for reasons that will become apparent in a moment. In my eulogy for Barrow (1952-2020), I quoted from his book The Left Hand of Creation (Oxford, 1983). I want to revisit that passage for its clarity, something that always inspired me about this brilliant physicist. For it seemed he could render the complex not only accessible but encouragingly pliable, as if scientific exploration always unlocked doors of possibility we could use to our advantage. His was a bright vision. The notion that animated him was that there was something in the sheer process of research that held its own value. Thus: Could there be any shortcuts to the answers to the cosmological questions? There are some who foolishly desire contact with advanced extraterrestrials in order that we might painlessly discover the secrets of the universe secondhand and prematurely extend our understanding. Such a civilization would surely resemble a child who receives as a...
Talking to Starglider
When we’ve discussed interstellar ‘interlopers’ like ‘Oumuamua and 2I/Borisov, the science fiction-minded among us have now and then noted Arthur Clarke’s Rendezvous with Rama (Gollancz, 1973). Although we’ve yet to figure out definitively what ‘Oumuamua is (2/I Borisov is definitely a comet), the Clarke reference is an imaginative nod to the possibility that one day an alien craft might enter our Solar System during a gravitational assist maneuver and be flung outward on whatever its mission was (in Rama’s case, out in the direction of the Large Magellanic Cloud). Since we’ll never see ‘Oumuamua again, we wait with great anticipation the work of the Legacy Survey of Space and Time (LSST), which will be run via the Vera Rubin Telescope (first light in 2025). Estimates vary widely but the consensus seems to be that with a telescope capable of imaging the entire visible sky in the southern hemisphere every few nights, the LSST should produce more than a few interstellar objects,...
A Resonant Sub-Neptune Harvest at HD 110067
The ancient notion of the ‘music of the spheres’ sounds primitive until you learn something about planetary dynamics. Gravity is wondrous and can nudge planets in a given system into orbits that show an obvious mathematical ratio. Two planets in resonance can emerge, for instance, in a 2:1 ratio, where one goes around its star twice in the time it takes the second to orbit it once. Such linkages might seem almost coincidental to the casual observer until the coincidences begin to pile up. In the exoplanet system at HD 110067, for example, resonance flourishes, so much so that we have six planets moving in a ‘resonance chain.’ No coincidence here, just gravity at work, although an actual coincidence is that just when I finished a post highlighting system dynamics in closely packed environments like TRAPPIST-1 as a ‘brake’ on inbound comets, an international team should reveal HD 110067’s resonance chain. It’s a beauty, for all six planets not only move in harmonic rhythm but also turn...
Cometary Impacts: Looking for Life in the Right Places
If you had to choose, which planetary system would you gauge most likely to house a life-bearing planet: Proxima Centauri or TRAPPIST-1? The question is a bit loaded given that there are seven TRAPPIST-1 planets, hence a much higher chance for success there than in a system that (so far) has produced evidence for only two worlds. But there are other factors having to do with the delivery of prebiotic materials by comet, which is the subject of a new paper from Richard Anslow (Cambridge Institute of Astronomy). “It’s possible that the molecules that led to life on Earth came from comets,’’ Anslow reminds us, “so the same could be true for planets elsewhere in the galaxy.” So let’s untangle this a bit. We don’t know whether comets are vital to the origin of life on Earth or any other world, and Anslow (working with Cambridge colleagues Amy Bonsor and Paul B. Rimmer) does not argue that they are. What their paper does is to examine the environments most likely to be affected by cometary...
Tightening Proxima Centauri’s Orbit (and an Intriguing Speculation)
Although I think most astronomers have assumed Proxima Centauri was bound to the central binary at Alpha Centauri, the case wasn’t definitively made until fairly recently. Here we turn to Pierre Kervella (Observatoire de Paris), Frédéric Thévenin (Côte d’Azur Observatory) and Christophe Lovis (Observatoire Astronomique de l'Université de Genève). We last saw Dr. Kervella with reference to a paper on aerographite as a sail material, but his work has appeared frequently in these pages, analyzing mission trajectories and studying the Alpha Centauri system. Here he and his colleagues use HARPS spectrographic data to demonstrate that we have at Centauri a single gravitationally bound triple system. This is important stuff; let me quote the paper on this work to explain why (italics mine): Although statistical considerations are usually invoked to justify that Proxima is probably in a bound state, solid proof from dynamical arguments using astrometric and radial velocity (RV) measurements...
The Odds on Alpha Centauri
How extraordinary that the nearest star to Earth is actually a triple system, the tight central binary visually merged as one bright object, the third star lost in the background field but still a relatively close 13000 or so AU from the others. Humans couldn’t have a better inducement to achieve interstellar flight on the grounds of these stars alone. We get three stellar types: The G-class Centauri A, the K-class Centauri B, both of which are capable of hosting planets, perhaps habitable, of their own. And then we have Proxima Centauri, opening up M-class red dwarf stars to close investigation, and we already know of a planet in the habitable zone there, adding to the zest of the venture. If extraterrestrial beings in a system like this would have even more inducement to travel, with another star’s planets perhaps as close to them as our own system’s worlds are to us, we humans are also spurred to undertake a journey, because 4.2 light years is a mere stone’s throw in the overall...
Is Interstellar Flight Inevitable?
The wish that humans will one day walk on exoplanets is a natural one. After all, the history of exploration is our model. We look at the gradual spread of humanity, its treks and voyages of discovery, and seamlessly apply the model to a future spacefaring civilization. Science fiction has historically made the assumption through countless tales of exploration. This is the Captain Cook model, in which a crew embarks on a journey into unknown regions, finds new lands and cultures, and returns with samples to stock museums and tales of valor and curiosity. Captain Cook didn’t have a generation ship, but HMS Endeavour was capable of voyages lasting years, stocking itself along the way and often within reach of useful ports of call. A scant 250 years later, however, we need to consider evolutionary trends and ask ourselves whether our ‘anthropocene’ era will itself be short-lived. Even as we ask whether human biology is up for voyages of interstellar magnitude, we should also question...