The idea that we might take an active, working spacecraft in the Kuiper Belt and not only repurpose it for a different task (heliophysics) but also dismiss the team that is now running it is patently absurd. Yet this appears to be a possibility when it comes to New Horizons, the remarkable explorer of Pluto/Charon, Arrokoth, and the myriad objects of the Kuiper Belt. NASA’s Science Mission Directorate, responding to a 2022 Senior Review panel which had praised New Horizons, is behind the controversy, about which you can read more in NASA’s New Horizons Mission Still Threatened. So absurd is the notion that I’m going to assume this radical step, apparently aimed at ending the Kuiper Belt mission New Horizons was designed for on September 30 of 2024, will not happen, heartened by a recent letter of protest from some figures central to the space community, as listed in the above article from Universe Today. These are, among a total of 25 planetary scientists, past Planetary Society...
Rethinking Planet 9
Trans-Neptunian Objects, or TNOs, sound simple enough, the term being descriptive of objects moving beyond the orbit of Neptune, which means objects with a semimajor axis greater than 30 AU. It makes sense that such objects would be out there as remnants of planet formation, but they’re highly useful today in telling us about what the outer system consists of. Part of the reason for that is that TNOs come in a variety of types, and the motions of these objects can point to things we have yet to discover. Thus the cottage industry in finding a ninth planet in the Solar System, with all the intrigue that provides. The current ‘Planet 9 Model’ points to a super-Earth five to ten times as massive as our planet located beyond 400 AU. It’s a topic we’ve discussed often in these pages. I can recall the feeling I had long ago when I first learned that little Pluto really didn’t explain everything we were discovering about the system beyond Neptune. It simply wasn’t big enough. That pointed...
Interstellar Probe: Into the G Cloud
We’re living in a prime era for studying the Solar System's movement through the galaxy, with all that implies about stellar evolution, planet formation and the heliosphere’s interactions with the interstellar medium. We don’t often think about movements at this macro-scale, but bear in mind that the Sun and the planets are now moving through the outer edges of what is known as the local interstellar cloud (LIC), having been within the cloud by some estimates for about 60,000 years. What happens next? I always think about Poul Anderson’s wonderful Brain Wave when contemplating such matters. In the classic 1954 tale, serialized the year before in Space Science Fiction during the great 1950s boom in science fiction magazines, Brain Wave depicts the Earth’s movement out of an energy-damping field it had moved through since the Cretaceous. When the planet moves out of this field at long last, everyone on the planet gets smarter. What will happen when we leave the LIC? Nothing this...
Tidal Lock or Sporadic Rotation? New Questions re Proxima and TRAPPIST-1
Centauri Dreams regular Dave Moore just passed along a paper of considerable interest for those of us intrigued by planetary systems around red dwarf stars. The nearest known exoplanet of roughly Earth’s mass is Proxima Centauri b, adding emphasis to the question of whether planets in an M-dwarf’s habitable zone can indeed support life. From the standpoint of system dynamics, that often comes down to asking whether such a planet is not so close to its star that it will become tidally locked, and whether habitable climates could persist in those conditions. The topic remains controversial. But there are wide variations between M-dwarf scenarios. We might compare what happens at TRAPPIST-1 to the situation around Proxima Centauri. We have an incomplete view of the Proxima system, there being no transits known, and while we have radial velocity evidence of a second and perhaps a third planet there, the situation is far from fully characterized. But TRAPPIST-1’s superb transit...
Getting Neptune into Focus
As a book-dazzled kid growing up in St. Louis, I had the good fortune to be surrounded by books from previous generations, and specifically those belonging both to my father and my half-brother, who had died long before I was born. Among these was a multi-volume encyclopedia from the 1920s I’ve never been able to identify. All I have is the memory of looking through its musty volumes and realizing that Pluto was not listed in it, as the publication date was a few years earlier than Clyde Tombaugh’s epic search for the world. I do remember thinking that without Pluto, the Solar System only had eight planets, and musing in my teenage boy way about how odd this incomplete view of the Solar System was. Little did I know how much more was in store! As to that eighth planet, Neptune was a puzzler not only to the encyclopedia but to science fiction writers of the Gernsback era. Thus James Morgan Walsh’s “The Vanguard to Neptune,” published in Wonder Stories Quarterly in the Spring, 1932...
LSST: Interstellar Interlopers and the Nature of Z
Interstellar studies toy with our expectations. Those of us who think about sending probes to other stars share the frustration of the long time-scales involved, not just in transit times but also in arriving at the technologies to make such missions happen. But the other half of interstellar studies, the observation and characterization of targets, is happening at a remarkable rate, with new instruments coming online and an entire class of extremely large telescopes in the pipeline. Exoplanet studies thrive. In between, upcoming events are encouraging. Having identified two interstellar objects – 1I/ʻOumuamua and comet 2I/Borisov – in our own Solar System, we will shortly be able to expand the number of such confirmed interlopers enormously. That puts us in position to build intercept missions to study and sample material from another stellar system in relatively short order. The Legacy Survey of Space and Time (LSST), being planned for the now under construction Vera C. Rubin...
Administrative Leave
“It seems that destiny has taken a hand.” Thus Humphrey Bogart, in a pivotal scene from the iconic 1942 film Casablanca. In Bogart’s case, destiny had to do with the sudden arrival of Claude Rains and the gendarmerie at Rick's Café Américain, with profound implications for his relationship with Ilsa. In my case, fate was more jejune, involving the failure of my PC’s power supply just as I was asking myself whether it was now time for my August vacation. The power supply left little doubt. Surely a sign from the cosmos that after all the recent work reconfiguring the site's software, I should take some time off? That’s how I plan to interpret it, in any case. In the meantime, I’ll get the PC problem resolved. As to the still developing work on the site, a couple of things to note: 1) I am all too aware that the mobile experience is problematic, depending on what phone you use. I find this bewildering, as many people see the site correctly on their phones, whereas people like me see a...
Nucleic Acid Stability in the Venusian Clouds
How to approach finding life on other worlds will continue to be a challenging issue, but how useful that even as we work out strategies for studying exoplanet atmospheres, we have planets we can actually reach right here in our own Solar System. And if the hunt for life has turned up empty thus far on Mars, we can keep searching there even as we consider the exotic possibility of life in the clouds of Venus. We've looked at Venus Life Finder before in these pages. This series of missions is now known as Morning Star, all designed to probe the clouds for signs of a kind of life that would have to endure the most hellish conditions we can imagine. In today's post, Alex Tolley examines the Morning Star Missions and how they might proceed, depending on the results of that all important first sampling of the atmosphere. by Alex Tolley “To boldly seek life, where no terrestrial life has gone before” The “Morning Star Missions” (formerly Venus Life Finder) group had previously outlined...
SETI: New Tools for Screening Out Radio Interference
Two new techniques for examining interesting SETI signals come into view this morning, one out of Breakthrough Listen work at UC-Berkeley, the other from researchers working with the Five-hundred-meter Aperture Spherical radio Telescope (FAST), the so-called ‘Heaven’s Eye’ instrument located in southwest China. In both cases, the focus is on ways to screen SETI observations from disruptive radio frequency interference (RFI), which can appear at first glance to flag a signal from another star. The Chinese work relies upon FAST’s array of receiving instruments, each acting as a separate ‘beam’ to cover slightly different portions of the sky. FAST’s currently operational L-band receiver array consists of 19 beams, to which researchers led by Bo-lun Huang (Beijing Normal University) apply a technique called MultiBeam Point-source Scanning (MBPS). Here the instrument scans the target star sequentially with different beams of the instrument, setting up the possibility of cross-verification...
The “Habitability” of Worlds (Part II)
If we ever thought it would be easy to tell whether a planet was 'habitable' or not, Stephen Dole quickly put the idea to rest when he considered all the factors involved in his study Habitable Planets for Man (1964). In this second part of his essay on habitability, Dave Moore returns to Dole's work and weighs these factors in light of our present knowledge. What I particularly appreciate about this essay in addition to Dave's numerous insights is the fact that he has brought Dole's work back into focus. The original Habitable Planets for Man was a key factor in firing my interest in writing about interstellar issues. And Centauri Dreams reader Mark Olson has just let me know that Dole appears as a major character in a novel by Harry Turtledove called Three Miles Down. It's now in my reading stack. by Dave Moore In Part I of this essay, I listed the requirements for human habitability in Stephen Dole’s report, Habitable Planets for Man. Now I’ll go over what we’ve subsequently...
The “Habitability” of Worlds (Part I)
Dave Moore is a Centauri Dreams regular who has long pursued an interest in the observation and exploration of deep space. He was born and raised in New Zealand, spent time in Australia, and now runs a small business in Klamath Falls, Oregon. He counts Arthur C. Clarke as a childhood hero, and science fiction as an impetus for his acquiring a degree in biology and chemistry. Dave has kept up an active interest in SETI (see If Loud Aliens Explain Human Earliness, Quiet Aliens Are Also Rare) as well as the exoplanet hunt. In the essay below, he examines questions of habitability and how we measure it, issues that resonate in a time when we are preparing to evaluate exoplanets as life-bearing worlds and look for their biosignatures. by Dave Moore In this essay I’ll be examining the meaning of the word ‘habitable’ when applied to planetary bodies. What do we mean when we talk about a habitable planet or a planet’s habitability? What assumptions do we make? The first part of this essay...
A Liquid Water Mechanism for Cold M-dwarf Planets
A search for liquid water on a planetary surface may be too confining when it comes to the wide range of possibilities for supporting life. We see that in our own Solar System. Consider the growing interest in icy moons like Europa and Enceladus, where there is no possibility of surface water but a potentially rich environment under a thick layer of ice. Extending these thoughts into the realm of exoplanets reminds us that our calculations about how many life-bearing worlds are out there may be in need of revision. This is the thrust of work by Lujendra Ojha (Rutgers University) and colleagues, as developed in a paper in Nature Communications and presented at the recent Goldschmidt geochemistry conference in Lyon. What Ojha and team point out is that radiogenic heating can maintain liquid water below the surface of planets in M-dwarf systems, and that added into our astrobiological catalog, such worlds, orbiting a population of stars that takes in 75 percent or more of all stars in...
Reducing the Search Space with the SETI Ellipsoid
SETI’s task challenges the imagination in every conceivable way, as Don Wilkins points out in the essay below. A retired aerospace engineer with thirty-five years experience in designing, developing, testing, manufacturing and deploying avionics, Don is based in St. Louis, where he is an adjunct instructor of electronics at Washington University. He holds twelve patents and is involved with the university’s efforts at increasing participation in science, technology, engineering, and math. The SETI methodology he explores today offers one way to narrow the observational arena to targets more likely to produce a result. Can spectacular astronomical phenomena serve as a potential marker that could lead us to a technosignature? by Don Wilkins Finite SETI search facilities searching a vast search volume must set priorities for exploration. Dr. Jill Tarter, Chair Emeritus for SETI Research, describes the search space as a “nine-dimensional haystack” composed of three spatial, one temporal...
Earth in Formation: The Accretion of Terrestrial Worlds
It would be useful to have a better handle on how and when water appeared on the early Earth. We know that comets and asteroids can bring water from beyond the ‘snowline,’ that zone demarcated by temperatures beyond which volatiles like water, ammonia or carbon dioxide are cold enough to condense into ice grains. For our Solar System, that distance in our era is 5 AU, roughly the orbital distance of Jupiter, although the snowline would have been somewhat closer to the Sun during the period of planet formation. So we have a mechanism to bring ices into the inner Solar System but don’t know just how large a role incoming ices played in Earth’s development. Knowing more about the emergence of volatiles on Earth would help us frame what we see in other stellar systems, as we evaluate whether or not a given planet may be habitable. Usefully, there are ways to study our planet’s formation that can drill down to its accretion from the materials in the original circumstellar disk. A new...
On Retrieving Dyson
One of the pleasures of writing and editing Centauri Dreams is connecting with people I’ve been writing about. A case in point is my recent article on Freeman Dyson’s “Gravitational Machines” paper, which has only lately again come to light thanks to the indefatigable efforts of David Derbes (University of Chicago Laboratory Schools, now retired). See Freeman Dyson’s Gravitational Machines for more, as well as the follow-up, Building the Gravitational Machine. I was delighted to begin an email exchange with Dr. Derbes following the Centauri Dreams articles, out of which emerges today’s post, which presents elements of that exchange. I run this particularly because of my continued fascination with the work and personality of Freeman Dyson, who is one of those rare individuals who seems to grow in stature every time I read or hear about his contributions to physics. It was fascinating to receive from Dr. Derbes not only the background on how this manuscript hunter goes about his craft,...
Sunshade: A New Trek through ‘Daedalus Country’
Letting the imagination roam has philosophical as well as practical benefits. From the interstellar perspective, consider the Daedalus starship, designed with loving detail by members of the British Interplanetary Society in the 1970s. The mammoth (54,000 ton) vehicle was never conceived as remotely feasible at our stage of technology. But ‘our stage of technology’ is exactly the point the project illustrated. Daedalus demonstrated that there was nothing in physical law to prevent the construction of a starship. The question was, when would we reach the level of building it? For as Robert Forward frequently pointed out, interstellar flight could no longer be considered impossible. We can’t know the answer to the question, but recall that before Daedalus, there was a lot of ‘informed’ opinion that interstellar flight was a chimera, and that all species were necessarily restricted to their home systems. Daedalus made the point debatable. If a civilization had a thousand year jump on us...
What We’re Learning about TRAPPIST-1
It’s no surprise that the James Webb Space Telescope’s General Observers program should target TRAPPIST-1 with eight different efforts slated for Webb’s first year of scientific observations. Where else do we find a planetary system that is not only laden with seven planets, but also with orbits so aligned with the system’s ecliptic? Indeed, TRAPPIST-1’s worlds comprise the flattest planetary arrangement we know about, with orbital inclinations throughout less than 0.1 degrees. This is a system made for transits. Four of these worlds may allow temperatures that could support liquid water, should it exist in so exotic a locale. Image: This diagram compares the orbits of the planets around the faint red star TRAPPIST-1 with the Galilean moons of Jupiter and the inner Solar System. All the planets found around TRAPPIST-1 orbit much closer to their star than Mercury is to the Sun, but as their star is far fainter, they are exposed to similar levels of irradiation as Venus, Earth and Mars...
Abundant Phosphorus in Enceladus Ocean Increases Habitability: But is Enceladus Inhabited?
Finding the right conditions for life off the Earth justifiably drives many a researcher's work, but nailing down just what might make the environment beneath an icy moon's surface benign isn't easy. The recent wave of speculation about Enceladus revolves around the discovery of phosphorus, a key ingredient for the kind of life we are familiar with. But Alex Tolley speculates in the essay below that we really don't have a handle on what this discovery means. There's a long way between 'habitable' and 'inhabited,' and many data points remain to be analyzed, most of which we have yet to collect. Can we gain the knowledge we need from a future Enceladus plume mission? by Alex Tolley There has been abundant speculation about the possibility of life in the subsurface oceans of icy moons. Europa’s oceans with possible hydrothermal vents mimicking Earth’s abyssal oceans and the probable site of the origin of life, caught our attention now that Mars has no extant surface life. Arthur C...
Tightening our Understanding of Circumbinary Worlds
I’m collecting a number of documents on gravitational wave detection and unusual concepts regarding their use by advanced civilizations. It’s going to take a while for me to go through all these, but as I mentioned in the last post, I plan to zero in on the intriguing notion that civilizations with abilities far beyond our own might use gravitational waves rather than the electromagnetic spectrum to serve as the backbone of their communication system. It’s a science fictional concept for sure, though there may be ways it could be imagined for a sufficiently advanced culture. For today, though, let’s look at a new survey that targets highly unusual planets. Binaries Escorted by Orbiting Planets has an acronym I can get into: BEBOP. It awakens the Charlie Parker in me; I can almost smell the smoky air of a mid-20th century jazz club and hear the clinking of glasses above Parker’s stunning alto work. I was thinking about the great sax player because I had just watched, for about the...
Building the Gravitational Machine
A friend and I were sitting in a diner some time back talking mostly about old movies (my passion is for black-and-white films from 1927 to the death of Bogart in 1957). Somehow the topic of gravity came up, I suspect because we had homed in on early 50’s science fiction films. Anyway, I remember his eyebrows raising when I mentioned how puny a force gravity was. I can understand why. We think about massive objects when we think about gravity, but of course it takes a lot of mass to get a little gravity. In fact, gravity is some 1038 times weaker than the strong force that holds atomic nuclei together, easily illustrated by pointing out to my friend that I was overcoming an entire planet’s worth of gravity by lifting the salt shaker on the table. I learned from Greg Matloff and Eugene Mallove’s The Starflight Handbook that despite Freeman Dyson’s early interest in using the gravitational force to capture energy from astronomical objects, it was Stanislaw Ulam who first pondered the...