Extraterrestrial Life: The Need for an Answer

An article in Time Magazine's latest issue caught my eye as I thumbed through it while waiting in line at the grocery store. The magazine is running a feature called '10 Ideas That Will Change the World,' and they tend toward being optimistic takes on huge problems. Thus the deficit gets an essay about how we're going to fix it, while Afghanistan gets a thumbs-up for progress in the right direction. The article finds gold in everything from direct mailings (OK because they help charities raise money) to modern airports, which are creating a new kind of community. And in the midst of this is a puzzling piece by Jeffrey Kluger called 'Relax: You Don't Need to Worry About Meeting E.T.', where the upshot is: 'Don't worry about contact with extraterrestrial civilizations. It will never happen.' Here's a quote: Humans and aliens haven't connected yet, but with 1022 stars out there (that's 1 with 22 zeros), it's just a matter of time — right? Wrong. If exobiologists have learned...

read more

On Meteorites and Budgets

Two kinds of astrobiology stories are in the wind this morning. One of them has to do with the weekend eruption of stories concerning evidence of fossilized life inside a meteorite. The other deals with scientific investigation off-planet, and although sparsely covered, it's the one with the greater significance for finding life elsewhere. But first, let's get Richard Hoover's paper about meteorite life out of the way, for the growing consensus this morning is that there are serious problems with his analysis, especially as regards contamination of the sample here on Earth. I have no problems with the panspermia idea -- the notion that life just may be ubiquitous, and that planetary systems may be seeded with life not just from other planets within the system but from other stellar systems entirely. It's an appealing and elegant concept, but thus far we have no proof, and despite what Dr. Hoover is seeing in samples from three meteorites, we still can't definitively say that we've...

read more

A Dialogue on SETI

Last October, a conference at the Royal Society looked into "the detection of life, the communication with potential extra-terrestrial civilizations, the implications for the future of humanity, and the political processes that are required." It was a fascinating gathering, one whose results I've been able to study ever since thanks to Keith Cooper, who forwarded videos of a debate there on interstellar messaging (METI) and passed along transcripts of the various panels. Keith is editor of the superb Astronomy Now and is an accomplished writer on space exploration and astronomy, with over 100 articles published. I especially want to mention SETI: Cosmic Call and SETI: Terminating the Transmission in relation to what follows below. For as Keith and I discussed these issues, it occurred to me that our correspondence in the form of a dialogue was a natural for Centauri Dreams. So here's a slightly edited version of some recent thoughts of ours on SETI, the strength of extraterrestrial...

read more

A Living Planet Between the Stars?

A planet that wanders through the night far from any star is a fascinating notion, one that resonates on some primal level with me because of my childhood viewing of the 1951 film The Man from Planet X. In the movie, a scientist on a remote Scottish moor observes a rogue planet as it approaches the Earth, and deals with a visitor from that world whose apparent good intentions are brought to ruin by a self-serving character intent on exploiting the situation. I doubt similar viewing of this old classic motivated many of my readers, but evidently the idea of a rogue planet does inspire thought, given how many people wrote me about new work on the idea of wandering planets. The paper is by Dorian Schuyler Abbot and Eric Switzer (University of Chicago) and follows up studies of similar ‘dark’ planets by John Debes (Carnegie Institution) and Steinn Sigurðsson (Penn State) -- more about the latter duo in a moment. For now, focus on the process. We know that planets can be thrown out of...

read more

The ‘I Love Lucy’ Signal

As a fan of I Love Lucy since childhood, I've always been pleased that this show -- and not, say, Milton Berle or Sid Caesar -- is the one always referred to when talking about Earth being detected by other civilizations. And when I first thought about it, the idea that there was a detectable bubble of TV transmission forging out into the galaxy since Lucy's first show in 1951 seemed completely wondrous. I Love Lucy is 60 light years from us now, or will be with this October's anniversary of that first show. I've always wondered what extraterrestrials would make of Fred Mertz. The film Contact mines the theme of stray transmissions from Earth, although in the case of Sagan's story, it's the transmissions from the 1936 Olympics in Berlin that trigger the detection and subsequent transmissions to Earth. A writer and music critic who I've known over the years once asked me about the expanding wavefront of Earthly transmissions, pondering how marvelous it would be to somehow get out in...

read more

A Renewed Concern: Flares and Astrobiology

Before the recent American Astronomical Society meeting in Seattle gets too far behind us, I want to be sure to include an interesting story on red dwarfs in the coverage here. The story involves an extrasolar planet survey called SWEEPS -- Sagittarius Window Eclipsing Extrasolar Planet Search, which used the Hubble Space Telescope to monitor 215,000 stars in the so-called Sagittarius Window (also called Baade's Window, after Walter Baade, who discovered it with the 18" Schmidt camera on Mt. Palomar). The 'window' offers a view of the Milky Way's central bulge stars, which are otherwise blocked by dark clouds of galactic dust. M-dwarfs are by far the most common type of star in the Milky Way, and therefore have major implications for the search for extraterrestrial life. We now know from SWEEPS data that these small stars are given to stellar flares that can have major effects on a planetary atmosphere. Flares have often been mentioned as a serious problem for the development of life...

read more

Arsenic and Odd Life

As if it were news, one thing the great flap over astrobiology and yesterday afternoon's NASA news conference tells us is that anything smacking of extraterrestrial life brings over the top commentary long before the findings are officially discussed, as should be clear from some of the Internet blogging about the GFAJ-1 bacterium found in Mono Lake. And what a shame. Despite the astrobiology teaser, GFAJ-1 does not in itself tell us anything about alien life and does not necessarily represent a 'shadow biosphere,' a second startup of life on Earth that indicates life launches in any available niche. But the find is remarkable in its own right. Let's leave the astrobiology aside for the moment and simply focus on the fact that life is fantastically adaptable in terms of biochemistry, and can pull off surprises at every turn. That's always a result worth trumpeting, even if it leaves the wilder press speculations in the dust. After all, it's long been assumed that the six elements...

read more

Red Dwarfs: A Rich Harvest

I never have trouble finding topics to discuss on Centauri Dreams, but this morning's take was unusually bountiful. For the past several days I've had two embargoed stories to choose from, both going public this PM. Do I write about tripling the number of stars in the universe, or do I choose the first analysis of a 'super-Earth' atmosphere? It's a tough choice, but I'm going with the stars, given that the story relates to what I consider the most fascinating venue for astrobiology, planets around red dwarfs. We'll do the super-Earth atmosphere -- fascinating in its own right -- tomorrow. The story comes out of Yale University, whose Pieter van Dokkum led the research using telescopes at the Keck Observatory in Hawaii. We've long known that because of their faintness and small size, getting a handle on the red dwarf population was problematic. Usually, I've seen a figure around 75 percent cited for the Milky Way, meaning most stars in our galaxy are red dwarfs (the Sun, a G-class...

read more

Astrobiology on the Cheap

Keeping space missions separate can be a difficult challenge when so many satellites are launched on a single rocket. Take O/OREOS (Organism/Organic Exposure to Orbital Stresses). The small satellite rode into space on an Air Force Minotaur IV rocket on the 19th, a launch we noted here in connection with the NanoSail-D solar sail demonstrator. For NanoSail-D was itself carried into space as part of the FASTSAT payload bus (Fast, Affordable Science and Technology Satellite), and FASTSAT and O/OREOS were subsumed under a mission called Space Test Program S26. Not to mention a number of other satellites from universities and industry that hitched a ride on the same booster. All of this produces not just confusion but acronym fatigue. Nonetheless, interesting science is in the works. O/OREOS is all about conducting astrobiology science experiments on the cheap using nanosatellites (CubeSats), helping scientists plan future experiments on how organic molecules are changed by exposure to...

read more

The Poetry of SETI

Stephen Baxter's "Turing's Apples," which originally ran in a collection called Eclipse Two (2008), is an intriguing take on SETI and the problem of extracting meaningful information from a signal. It's a bit reminiscent of Fred Hoyle's A for Andromeda (1962) in that the SETI signal received on Earth contains instructions for building something that may or may not pose a threat to our species. Sorting out the issue involves discussion of information theory and Shannon entropy analysis. Say again? Best to handle this by quoting from the story. In this scene, the protagonist's brother, who is obsessed with the signal his team has received from the direction of the Eagle Nebula and, ultimately, the galactic center, is explaining how information is being extracted from it. Shannon entropy analysis looks for relationships between signal elements. The brother goes on: "You work out conditional probabilities: Given pairs of elements, how likely is it that you'll see U following Q? Then you...

read more

Exoplanet Atmospheres: What We Don’t Know

What happens in the atmosphere of a tidally locked world in the habitable zone of a red dwarf? We have solid work suggesting through simulations that habitable conditions could exist there, but it's also true that we're in the early stages of these investigations and we have no actual examples to work with. Drawing hasty conclusions is always dangerous, particularly when we're talking about the details of atmospheric circulation on a planet no one has ever seen. Take Gliese 581g. Assuming it exists -- and there is still a bit of doubt about this, although the consensus seems to be that it's really there -- we can place it in a temperature zone that would allow life. We don't know for a fact, though, that it isn't a water world, covered entirely with deep ocean, a planet that migrated from beyond the snowline into its present position. And even if it is a rocky planet with a substantial atmosphere, our simulations of atmospheric circulation only represent the best that is known today....

read more

SETI: The Red Giant Factor

The ‘slow boat’ to Centauri concept we’ve discussed before in these pages envisions generation ships, vessels that take thousands of years to cross to their destination. And based on current thinking, that’s about the best we could manage with the propulsion systems currently in our inventory. Specifically, a solar sail making a close solar pass (a ‘sundiver’ maneuver) could get us up to 500 or 600 kilometers per second (0.002c), making a 2000-year journey to the nearest star possible. It’s hard to imagine under what circumstances such a mission might be launched. But let’s think long-term, as Greg Matloff (New York City College of Technology) did in a session that just concluded at the International Astronautical Congress in Prague. Matloff, a solar sail expert and well known figure in the interstellar community, notes that when the Sun leaves the main sequence and becomes a red giant, its luminosity may have increased by a factor of a thousand. Imagine using that kind of star as...

read more

Interstellar Archaeology on the Galactic Scale

The European Planetary Science Congress ends today in Rome even as scientists and engineers on the astronautical side of things head for Prague, where the International Astronautical Congress convenes on Monday. I'll be keeping an eye on events in Prague and wishing I could join the gathering of Tau Zero practitioners that will be taking place there -- Marc Millis will be presenting four papers, and many of the Project Icarus team members are also making the journey, so we should be getting regular updates on matters interstellar. Nor do I want to neglect the Royal Society meeting on extraterrestrial life, coming up early in October in Buckinghamshire in the UK. Emails from James Benford (Microwave Sciences) and Richard Carrigan (Fermilab) tell me both will be speaking at the session, which reminds me that it was way back in April that I promised more on Carrigan's notions of interstellar 'archaeology,' a form of SETI that makes no assumptions about the originating civilization. It's...

read more

SETI on the Ecliptic

Is anyone out there in the galaxy aware of our presence? If so, it's most likely through detection of our planetary radars, like those at Arecibo and Evpatoria that are used to detect and study nearby objects like asteroids, and provide a valuable part of our planetary defense. Sure, we've been pumping television and radio signals into the deep for a long time now, but Arecibo is the most powerful radar in the world, its 430 MHz transmitter offering a maximum total peak pulse output power of 2.5 MW. The planetary radars at Arecibo, Goldstone and Evpatoria are sending far more powerful signals than the faint traces of our early TV broadcasts. It's one of the hopes of SETI that we might detect a similar transmission from another civilization, but in saying that we run into all kinds of assumptions. How long a time-frame does a civilization have before it develops technologies far superior to planetary radars for studying nearby objects? For that matter, how long would any sort of...

read more

Detecting (and Understanding) Life Signals

A symposium celebrating the first fifty years of NASA' exobiology program takes place on October 14 in Arlington, Virginia. 'Seeking Signs of Life' looks all the way back to 1959, when NASA funded its first exobiology investigation, an experiment for a future spacecraft to detect life on Mars. The actual exobiology program was established in 1960, and led to the three Viking experiments that eventually flew. Exobiology has these days morphed into 'astrobiology,' as we look at topics as diverse as chemical evolution in interstellar space and planetary formation. For those in range of Arlington, more information is available here. Be aware as well of a workshop on SETI that is now taking place at the National Radio Astronomy Observatory in Green Bank, WV, marking the 50th anniversary of Frank Drake's first search for extraterrestrial signals. Webcasts begin at 0830 EDT (1230 UTC), and will include Drake's views on 'SETI in 2061 and Beyond' at that time on September 15. Further...

read more

Poul Anderson’s Answer to Fermi

Enrico Fermi's paradox has occupied us more than occasionally in these pages, and for good reason. 'Where are they,' asked Fermi, acknowledging an obvious fact: Even if it takes one or two million years for a civilization to develop and use interstellar travel, that is but a blip in terms of the 13.7 billion year age of the universe. Von Neumann probes designed to study other stellar systems and reproduce, moving outward in an ever expanding wave of exploration, could easily have spread across the galaxy long before our ancestors thought of building the pyramids. Where are they indeed. Kelvin Long, one of Project Icarus' most energetic proponents, recently sent me Poul Anderson's thoughts on the subject. I probably don't need to tell this audience that Anderson was a science fiction author extraordinaire. His books and short stories occupied vast stretches of my youth, and I still maintain that if you want to get not so much the tech and science but the sheer wonder of the...

read more

SETI and the ‘Long Stare’

It's been a week with an exoplanet focus, what with the interesting Kepler results yesterday and the five, or perhaps seven, planets found around the same star by the HARPS instrument. But I can't close the week without recourse to Seth Shostak's recent comments on biological versus machine intelligence. Paul Davies took much the same tack in his recent book The Eerie Silence (Houghton Mifflin Harcourt, 2010), arguing that any civilization we encounter will likely be composed of intelligent machines. Shostak thinks SETI should take that seriously. Searching for Doppelgängers Right now we're searching for what Shostak calls 'doppelgängers of humans' -- i.e., SETI has focused on places that could support life forms that do more or less what we do, which includes not only using radio to communicate, but much broader traits like living for finite lifetimes, following basic biochemical dictates and being subject to evolution. That biases the search toward places that could sustain life as...

read more

A Near-Term Read on Life in the Galaxy

Although he doesn't post nearly as often as some of us would like, Caleb Scharf's Life, Unbounded site is always worth reading. Scharf, author of the textbook Extrasolar Planets and Astrobiology (University Science Books, 2008) is the director of the Columbia University Astrobiology Center. As such, he's positioned to offer valuable insights into our investigations of the forms life might take on other worlds. Not long ago he wrote a fascinating post for Scientific American on a statistical approach to astrobiology, a timely idea as we discuss ongoing missions like Kepler and proposed space telescopes like WFIRST. Natural Selection on a Galactic Scale Scharf's latest is a quick take on panspermia, the idea that viable organisms may be exchanged between planets as various early impacts spread debris through a planetary system. We know that surface material moves continually between the rocky moons and planets of our own system, and we've also come to understand that microbial...

read more

A Continental Shift and Its Implications

Although it seems a long way from interstellar space, the early Earth is a fascinating laboratory for life's development that should yield clues about how life takes hold elsewhere. Thus new work on the movements of the early continents catches the eye. In this case, the Gondwana supercontinent is found to have undergone a 60-degree rotation across Earth's surface during a highly interesting period, the Early Cambrian. This is the fecund era when the major groups of complex animals appeared in relatively rapid succession. Gondwana is what we can call the southern precursor supercontinent, a vast region that would eventually separate from Laurasia roughly 200 million years ago when the Pangaea supercontinent broke into two large areas. This Wikipedia article gives you the basics on Gondwana, noting that it included most of the landmass in today's southern hemisphere, including Antarctica, South America, Africa, Madagascar, Australia, New Guinea and New Zealand, along with the Indian...

read more

Project Argus: Finding a ‘Benford Beacon’

It's heartening to see James and Gregory Benford's work on extraterrestrial beacons receiving broader coverage. We've looked at the relevant papers in these pages [run a search on 'Benford' in our database and you'll pull up articles by and about them], but news features like this one in TIME Magazine are pushing the Benford brothers' work out to a much larger audience. That's an important step, because right now the view of SETI most likely held by the average person relates to movies like Contact, in which huge dishes pointed at particular stars seem to be the way to proceed. The Benfords want to re-write that scenario in a big way. We'll have to leave as debatable the question about how far away our own television transmissions can be received. James Benford commented here not long ago that a civilization of approximately our technological level would not be able to receive broadcast signals as weak as those we've sent out carrying the likes of Milton Berle and I Love Lucy....

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives