When Freeman Dyson recently addressed Flight School (a part of the PC Forum technology conference held in Scottsdale AZ in March), he cited one key driver for getting people into space in a big way: propulsion. "What you need," Dyson said, "is a launch system that stays on the ground." A case in point that Dyson favors is laser propulsion, as exemplified in the 'lightcraft' concept of Rensselaer Polytechnic Institute's Leik Myrabo. Back in October of 2000, a small test model of Myrabo's design rose to a height of 233 feet, powered by a 10-KW pulsed carbon dioxide laser. Beamed energy means that future, full-scale versions of such technology will need only a small amount of on-board propellant, sharply reducing the mass of the vehicle. The lightcraft models created so far reflect the laser beam from a parabolic mirror on the underside of the vehicle to superheat air to a temperature roughly ten times that of the surface of the Sun. The air explodes and propels the craft into motion,...
Tweaking Einstein on the Nature of Light
It makes sense to this former Midwesterner that Alan Kostelecky can compare light to waves propagating across a field of grain. After all, Kostelecky works at Indiana University, in a state where fields of grain are not so far from view. The theoretical physicist argues in research published online today in Physical Review D that we could consider light as the result of small violations of relativity, which compare not only to waving wheat but to "...a shimmering of ever-present vectors in empty space." Having seen my share of winds rippling across wheat fields, I know one thing: a propagating wave in a nearby crop comes with a sense of directionality. You know which way the wind is coming from, and how it's affecting the local environment. Thinking of light in such terms is a far cry from a view with a much longer pedigree, that light depends upon an an underlying symmetry that is built into nature itself. Think of symmetry this way: Spacetime in the Einstein model has no preferred...
On Propulsion, Dark Energy, and Humility
Exotic forms of propulsion like warp drives or journeys through wormholes often seem like pure fantasy. It was Harvard's Edward Purcell, no stranger to the study of the cosmos through his work as a radio astronomer, who made the classic negative case: "All this stuff about traveling around the universe in space suits -- except for local exploration which I have not discussed -- belongs back where it came from, on the cereal box." But then humility returns and we realize how little we know. It would have astounded Purcell, as it astounds Centauri Dreams, to think that 70 percent of the universe is now considered to be 'dark energy,' the exact nature of which mystifies our greatest thinkers other than to say that without it, the universe would not be continuing to expand -- and accelerating its expansion, at that. And, of course, another 25 percent of the universe is equally bizarre, the so-called 'dark matter' that seems to pervade the cosmos. So our notions of interstellar flight...
Thinking Interstellar? Head for Albuquerque
The Space Technology and Applications International Forum (STAIF) opens today in Albuquerque. That makes New Mexico the place to be for new propulsion concepts and mission studies -- STAIF-2005 hosts six concurrent conferences organized by the University of New Mexico's Institute for Space and Nuclear Power Studies, and attendance is international in scope. Everything is on the table, from low-cost launch vehicles to nuclear propulsion, from robotics concepts for deep space missions to quantum entanglement. The proceedings of STAIF-2005 will be published by the American Institute of Physics, but Centauri Dreams will be digging around before then trying to come up with information on interstellar issues presented at the conference. Papers that catch the eye from a quick glance through this massive program: "The GEM (Gravity-Electro-Magnetism) Theory of Field Unification and its Application to Human Flight and Gravity Wave Production and Detection" -- John Brandenburg, Florida Space...
Using Desktop PCs to Detect Gravitational Waves
Most readers of Centauri Dreams will be familiar with SETI@home, the huge distributed computing project that taps the power of millions of PCs to process data from the Arecibo radio telescope. Distributed computing offers vast amounts of processing power, and it's the cornerstone of a new project called Einstein@home, which has been created to apply the same kind of computing muscle to the study of gravitational waves. The Laser Interferometer Gravitational Wave Observatory (LIGO) is behind this project, which will launch in February. Part of Einstein's general theory of relativity includes the prediction that gravity waves should permeate the universe. Researchers at LIGO are looking for hard data to prove the prediction, using sites in Louisiana and Hanford, WA. You an read more about the background of the project in this Nature.com article. A fine backgrounder on gravitational waves is available here. What exactly is LIGO looking for? A cosmic source that creates regular waves of...
A Skeptical Report on Antigravity
A report from two European scientists commissioned by the European Space Agency to investigate antigravity is now available in pre-print form at the ArXiv Web site. "Hypothecial Gravity Control and Possible Influence on Space Propulsion will eventually appear in the AIAA Journal of Propulsion and Power. The authors are Martin Tajmar of the Austrian aerospace firm ARC Seibersdorf and Orfeu Bertolami, of the Instituto Superior Técnico in Lisbon. (Note: The word 'hypothecial' in the paper title is surely a mistake; I'm sure the authors mean 'hypothetical.' In any case, the word 'hypothecial' doesn't show up even in dictionaries as huge as Webster's 3rd Unabridged). ESA's original charter to the scientists had been to study the concept of gravity control, and secondly to examine the credibility of previous claims of anomalous gravitational phenomena. From the study: "...current experimental knowledge and bounds on the fundamental underlying principles of General Relativity and of...
Via Wormhole to Another Universe?
Ask yourself this about extraterrestrial intelligence: are we more likely to detect it by picking up signals beamed to us from a species comparable to our own (at least in terms of intellectual capacity), or is it more likely that we'll run across some kind of artifact from a far more advanced race? The movie 2001: A Space Odyssey posited the latter. The idea was that humans would make contact with a robotic probe left on the Moon by a Type III civilization. It was Russian astrophysicist Nikolai Kardashev who ranked advanced extraterrestrial civilizations by their energy consumption in the 1960s. In fact, 2001 originally included comments by scientists discussing how such an event could occur and musing over the nature of advanced cultures (these were cut from the final edit, adding even more of a sense of mystery about what transpires). According to Kardashev, a Type III civilization is one that can work at inconceivably powerful levels, harnessing the energies of entire galaxies to...
On Colonizing the Galaxy
From the polymath Freeman Dyson, in an essay called "Extraterrestrials," which appears in his collection Disturbing the Universe (New York: Harper & Row, 1979, pp. 210-211): "Given plenty of time, there are few limits to what a technological society can do. Take first the question of colonization. Interstellar distances look forbiddingly large to human colonists, since we think in terms of our short human lifetime. In one man's lifetime we cannot go very far. But a long-lived society will not be limited by a human lifetime. If we assume only a modest speed of travel, say one hundredth of the speed of light, an entire galaxy can be colonized from end to end within ten million years. A speed of one percent of light velocity could be reached by a spaceship with nuclear propulsion, even using our present primitive technology. So the problem of colonization is a problem of biology and not of physics. The colonists may be long-lived creatures in whose sight a thousand years are but as...
A Downhill Run to Darkness?
The SETI Institute's Seth Shostak has some things to say about the future of the universe in a recent posting on Space.com, referring to current observations suggesting that the rate of expansion of the cosmos is speeding up. That could make for a long, long night: After all, most stars are older than the Sun, and the stellar population boom is definitely over. The Galaxy is graying (although the actual color change is to the red). The stars are going out. In about 100 billion years, the once-brightly spangled arms of the Galaxy will be riddled with Sun-sized carbon clinkers, black holes, and quiescent neutron stars - a hundred billion mute, stellar hulks. The fun will be over, but the decay will go on. Chaotic encounters will eventually strip planets from the corpses of their erstwhile suns, and galaxies will slowly evaporate - spewing their dark and lifeless contents into the ever-expanding void. Even massive black holes will someday melt away, adding their mass to the inert and...
Nanotechnology and the Interstellar ‘Needle’ Probe
Why keep a close eye on nanotechnology? The Foresight Institute's Conference on Advanced Nanotechnology, closing tomorrow at the Crystal City Marriott in Washington DC, is loaded with reasons, but for interstellar theorists, the answer is mass. Ponder this: the Project Daedalus multi-stage starship, designed by the British Interplanetary Society and the first complete theoretical study of an interstellar probe, carried 50,000 tons of fuel to push a 500 ton payload. And Daedalus used nuclear-pulse propulsion; the fuel to payload ratio gets far worse with utterly inadequate chemical rockets. Nanotechnology offers the bright promise of interstellar probes so small as to dwarf the imagination, with corresponding savings in propulsion systems, yet capable of assembling full-scale observation platforms at their target star. One of the major speakers at the Foresignt Institute conference is Robert Freitas, a giant in the field of nanotechnology and a senior research fellow at the Institute...
Laser Propulsion: Leave the Fuel at Home
Firing a laser at a metal target causes an explosion of ions that can be harnessed into an exotic form of propulsion. Called 'laser ablation technology,' the method is being studied intensively by the Laser Propulsion Group at the University of Alabama at Huntsville. Each pound of material generates five to ten times more thrust than a pound of chemical rocket fuel and oxidizer, according to a UAH press release. The method was demonstrated last June 7 in a Huntsville laboratory, constituting the first successful demonstration of laser-powered rocket propulsion in a vacuum, according to Dr. Andrew Pakhomov, associate professor of physics at UAH and a key player in the field of beamed energy propulsion. Research assistant Tim Cohen will make the first public presentation on this event on Wednesday at the Third International Symposium on Beamed Energy Propulsion at Rensselaer Polytechnic Institute in Troy, New York. Laser propulsion normally brings Leik Myrabo to mind (and indeed,...
Remembering Tau Zero
On the left is the cover of the first paperback edition of Poul Anderson's Tau Zero, published in 1970 (a shorter version called "To Outlive Eternity" appeared in 1967 in Galaxy Science Fiction, though unseen by me, as I was getting ready to leave for college). The first hardcover edition is below. Many of the scientists I talked to in doing the research for Centauri Dreams told me they read science fiction, and most favored the 'hard' SF, scrupulously accurate to science as understood at the time, favored by writers like Anderson. And several said that it had been Tau Zero that got them into physics or engineering in the first place. Here's Anderson's look at a Bussard ramjet as it consumes interstellar hydrogen on a runaway journey that will never end: The ship was not small. Yet she was the barest glint of metal in that vast web of forces which surrounded her. She herself no longer generated them. She had initiated the process when she attained minimum ramjet speed; but it became...