Are elliptical galaxies influenced by a halo of dark matter? The theory has been accepted until recently through observation of the gravitational effects apparently caused by such matter. But 2003 findings (Romanowsky et al., Science 301, pp. 1696-1698) turned up little evidence for dark matter in such galaxies. Now a different explanation for those observations has surfaced, one that seems to rescue the dark matter concept. That's good news, because dark matter ought to be there. From a University of California at Santa Cruz press release: "A dearth of dark matter in elliptical galaxies is especially puzzling in the context of the standard theory of galaxy formation, which assumes that ellipticals originate from mergers of disk galaxies," added Avishai Dekel, professor of physics at the Hebrew University of Jerusalem and first author of the Nature paper. "Massive dark matter halos are clearly detected in disk galaxies, so where did they disappear to during the mergers?" The dark...
Of Cosmology and MP3
Does quantum mechanics determine what we see in the large-scale structure of the universe today? Centauri Dreams admits to finding the notion nonsensical until reading Brian Greene's fine Fabric of the Cosmos (New York: Knopf, 2004), which explained the connection between the very small and what may exist on the macroscopic scale through the mechanism of cosmic inflation. In any case, it's a fascinating thought that we may one day understand the earliest moments of the universe by applying quantum principles that might be observable in the large scale structures of the cosmos. Physicist Raja Guhathakurta (University of California) has a go at issues like these in a presentation called "The Milky Way, Schrodinger's Cat and You," which was delivered as the September Keck Astronomy lecture. It's a sign of the riches available through the digital world that we can now download Dr. Guhathakurta's lecture through the kind offices of W. M. Keck Observatory in Mauna Kea (HI). Click here for...
Mystery in the Heart of Andromeda
A strange blue light near the core of the Andromeda Galaxy promises to tell us much about black holes and the behavior of objects near them. First spotted in 1995 by the Hubble Space Telescope, the blue light was thought to emmanate from a single, massive star, or possibly an exotic source of energy that was little understood. But new spectroscopic observations show that the light is actually made up of 400 stars packed into a disk only one light year across. Now this is a very strange finding, for these young stars -- thought to be on the order of 200 million years old -- are revolving around the black hole at the center of Andromeda so closely that they should be torn apart. How could gas and dust coalesce to form stars in such an environment? Mysteries, of course, are just what astronomers like to find; they often lead to enough new data to revise earlier theories and produce more complete explanations. Image: This artist's concept shows a view across a mysterious disk of young,...
Massive Explosion at Edge of Visible Universe
Astronomers have detected the most distant explosion ever observed, finding the afterglow of a gamma ray burst that marked the end of a massive star and the probable birth of a black hole. Named GRB 050904, the object's redshift is 6.29, pegging it as roughly 13 billion light years from Earth. The universe itself is now thought to be 13.7 billion years old, so the burst comes from the era when stars and galaxies had only recently formed. Gamma rays force astronomers to work fast. Most bursts are sudden events, lasting only about ten seconds, which is why alerts are sent out whenever NASA's Swift satellite detects one. But while the bursts are brief (and don't even penetrate the atmosphere), the afterglow of these mammoth explosions can linger long enough to be observed by instruments on the ground. Which is what UNC-Chapel Hill astronomer Daniel Reichart immediately set out to do. As telescopes around the globe locked onto the afterglow, Reichart's team was able to measure the...
A Vision of the Sun’s Future?
The white dwarf star GD 362 has been cooling for up to five billion years. You might think of it as an image of our Sun's future, although it was originally about seven times more massive. As the Sun's will do five billion years from now, this star's core simply ran out of fuel, reaching a point where it could no longer create the heat needed to counterbalance gravity. As the star died, it would have given off stellar material, initially swelling dramatically, then dying back to the dwarf we see today. But what has astronomers studying Gemini Observatory data talking is that GD 362 seems to be surrounded by an extensive band of dust and debris. The find is striking -- gravity and radiation should long ago have removed such materials from the star's proximity. The only reasonable explanation is that an asteroid, or perhaps something as large as a planet, has survived the demise of the star and is now contributing material for the debris disk. "The parallel to our own solar system's...
Fast Neutron Star Leaving the Galaxy
What would give a neutron star the kind of push that would send it out of the galaxy at over 1000 kilometers per second? Nobody knows, but data from the Very Long Baseline Array, a system of radio telescopes spanning 5,000 miles with locations from Hawaii to the US Virgin Islands, have revealed just such an object, and have allowed astronomers to measure its motion with unprecendented accuracy. "This is the first direct measurement of a neutron star's speed that exceeds 1,000 kilometers per second," said Walter Brisken, a National Radio Astronomy Observatory astronomer. "Most earlier estimates of neutron-star speeds depended on educated guesses about their distances. With this one, we have a precise, direct measurement of the distance, so we can measure the speed directly," Brisken said. The star's speed translates to 670 miles per second, numbingly fast, but even at these speeds, an object like this would still take 1200 years to cross the 4.3 light years that separates us from the...
A Stunning View of Interstellar Dust
Centauri Dreams has discussed the problem of interstellar dust for fast-moving probes before. Here the issue is highlighted in a Gemini Observatory image of NGC 6559, part of the large star-forming region in the southern constellation Sagittarius. The dark structure -- Gemini likens it to a Chinese dragon -- is the result of cool dust that absorbs background radiation from the surrounding hydrogen gas. The region, some 5000 light years away toward the center of the Milky Way, is a reminder that in many areas, space is anything but empty. Image credit: Gemini Observatory (using the Gemini South telescope at Cerro Pachón in the Chilean Andes).
Changing the Shape of the Milky Way
Getting an overview of our own galaxy is tricky work. After all, we live in one of its spiral arms, so we see through a swarm of surrounding stars that mask the true galactic shape. Astronomer Ed Churchwell at the University of Wisconsin describes the effort as an attempt to define the boundaries of a forest from a vantage point deep within the woods. But when it comes to stars, changes of wavelength can help. Working in the infrared, the Spitzer Space Telescope can see through intervening clouds of interstellar dust to the Milky Way's dazzling center. Churchwell and team's latest work is a survey of 30 million stars using Spitzer data that has revealed details about what the Milky Way looks like from the outside. The picture, as shown in the illustration, is a bit different than we had been led to expect. For cutting through the galactic center is what Churchwell calls a "long central bar." Other galaxies have been observed with stellar bars -- large bodies of gas, dust and stars....
The Search for Missing Quasars
Quasars remain a mystery in several key areas. These massive black holes that live at the center of distant galaxies are voracious, and we know that they can consume the equivalent mass of a thousand stars every year. Surrounded by rings of dust and gas, they light up as they pull in this material to become the fantastically bright objects we observe not just in visible light, but in infrared and x-ray light as well. And that's the problem. To get a count on how many quasars are out there, astronomers have measured the cosmic x-ray background, where quasars outshine everything in the universe. It should be possible to predict how many quasars there are using this method, but it doesn't seem to work. In fact, the estimated number derived from the x-ray background doesn't match the figures derived from x-ray and optical observations of known quasars. In other words, something is hiding many of the universe's quasars from our view. Now the Spitzer Space Telescope has used its infrared...
Life’s Potential in the Early Universe
Complex carbon-based molecules are considered the building blocks of life. Now the Spitzer Space Telescope has detected evidence for molecules made up of hydrogen and carbon in galaxies some 10 billion light years from Earth. The organic compounds -- polycyclic aromatic hydrocarbons, known as 'PAHs' -- are common on Earth and in galaxies like the Milky Way, but no instrument has found them as far back in time as Spitzer. PAHs are called 'organic' because of their carbon atoms. That doesn't translate to 'life-bearing,' for any molecule containing carbon is considered 'organic,' whether or not biology is involved. But find organic compounds and you find at least the potential for life. "This is 10 billion years further back in time than we've seen them before," said Dr. Lin Yan of the Spitzer Science Center at the California Institute of Technology in Pasadena, Calif. Yan and team will publish their findings in the August 10 issue of the Astrophysical Journal. What makes the Spitzer...
Tantalizing Evidence for Cosmic Strings
An object called CSL-1 may have a lot to say about the nature of the universe. The odd thing about this double source -- evidently a pair of galaxies -- is that both galaxies appear identical. They share a common redshift, a similar shape, and their luminosity profiles match that of two giant elliptical galaxies. Moreover, the spectra of the two components seem to be identical. Is this a double image of the same galaxy? If so, then something tantalizing is going on. String theory, the latest and still evolving explanation for how the universe works, says that there should be gigantic counterparts to the strings that make up the fundamental particles of matter. A single-dimensional string millions of light years in length -- think of it as a thread of energy -- is one prediction made by string theory, and CSL-1 may indicate the presence of just such a cosmic string. For a cosmic string would be so energetic that it would warp spacetime around it, with the effect that a string lying...
Lighting Up the Solar Wind
Tracking down the history of a star is no easy matter, but a supernova called SN 1979C is providing unexpected assistance. Just as researchers can study ancient climates by examining the concentric rings inside a tree, astronomers using the European Space Agency's XMM-Newton space observatory have found a way to study the rings around a star. SN 1979C, it turns out, produced huge stellar winds late in its life that flung particles into space over a period of millions of years. The result: a series of concentric rings lit up by x-rays when the star exploded. "We can use the X-ray light from SN 1979C as a 'time machine' to study the life of a dead star long before it exploded," says Dr Stefan Immler, leader of the team, from NASA's Goddard Space Flight Center, USA. "All the important information that usually fades away in a couple of months is still there." Image (click to enlarge): XMM-Newton image of X-ray light from the galaxy M100. Credit: European Space Agency. Immler and...
Astrodynamics at Princeton
Ed Belbruno did a terrific job putting together the New Trends in Astrodynamics and Applications II conference, from which I returned yesterday. I chose to drive to Princeton because of my growing aversion to airline travel. It was a long but generally uneventful drive except for the usual delays around Washington DC -- over an hour to clear the Beltway because of construction on one of the access ramps. But driving through western New Jersey is, as anyone who has done it knows, a pleasant experience, beautiful farmlands giving way to small villages here and there, with Princeton itself an oasis of lovely architecture, fine restaurants and, of course, a great university. About the only thing that didn't cooperate was the weather -- we had a chill rain for the first two days -- but Peyton Hall is about half a mile from the Nassau Inn, Princeton's fine colonial-era hostelry, and it was an energizing walk even with umbrella. The conference sessions were intense; we generally ran from...
Inside the Carina Nebula
Panoramas this stunning deserve a lingering look (and be sure to click the image for a higher resolution view). You're looking at more of the fruits of the Spitzer Space Telescope's remarkable labors, this time a false-color image showing a part of the star-forming region known as the Carina Nebula. Using infrared, Spitzer was able to penetrate the so-called 'South Pillar' region of the nebula to reveal yellow and white stars in their infancy, wrapped up inside pillars of thick pink dust. The hottest gases here are green; the foreground stars are blue, which shows up better in the enlargement. And note the bright area at the top of the frame, which is what this story is all about. The glow is caused by the massive star Eta Carinae, which is too bright to be observed by infrared telescopes. Stellar winds and ultraviolet radiation from this star are what have torn the gas cloud, leaving the tendrils and pillars visible here. It is this 'shredding' process that triggers the birth of the...
Microlensing Finds Distant Planet
One of the most distant planets ever discovered has been found 15,000 light years from Earth by an international team of astronomers helped by two amateurs from New Zealand. The method of discovery was gravitational microlensing, which occurs when a massive object like a star crosses in front of a star shining in the background. Light from the more distant object is bent and magnified as if by a lens. From astronmers' perspective here on Earth, the background star gets brighter as the lens crosses in front of it, and then fades as the lens moves away. Which is what happened on March 17, 2005 when Andrzej Udalski, professor of astronomy at Warsaw University and leader of the Optical Gravitational Lensing Experiment (OGLE) realized that a star he was observing was moving in front of a much more distant star. The brightening of the distant star was significant -- almost a hundred-fold -- and it was then that OGLE astronomers (and a team from the Microlensing Follow Up Network (MicroFUN)...
Webb Telescope Joins Voyagers on Endangered List
The mundane facts of finance continue to threaten our far-flung Voyager spacecraft as NASA looks for dollars to keep the missions alive. Adding further significance to the issue is the upcoming news conference on May 24, in which Voyager scientists will present information that has led them to conclude Voyager 1 has reached the heliosheath -- that area between 80 and 100 AU from the Sun just inside the boundaries of the heliosphere. The heliosphere is that region carved out by the solar wind from the Sun within the larger interstellar medium. The 'termination shock' is the zone where the solar wind is slowed by interstellar gas, dropping abruptly from its 300 to 700 kilometer per second velocity (the solar wind seems to change in speed and pressure, causing the termination shock to expand and contract). Having apparently exited the termination shock, Voyager 1 is in the heliosheath, on its way to the outer boundary of the Sun's magnetic field and solar wind. What tells us that...
Is Dark Energy Real?
The expansion of the universe ought to be slowing down -- gravitational attraction working on the ordinary matter of the cosmos should see to that. So evidence produced during the last eight years that the universe's expansion seems to be speeding up continues to confound astrophysicists. To explain it, a provocative notion has been introduced: two-thirds of the entire energy density of the universe consists of a new kind of energy. This 'dark energy' has the opposite effect of gravity, pushing away rather than attracting. But is there such a thing as dark energy, or is it just a way to explain something so baffling that we have no other models to describe it? "We don't know," comments Professor David Spergel of Princeton University. "It could be a whole new form of energy or the observational signature of the failure of Einstein's theory of General Relativity. Either way, its existence will have profound impact on our understanding of space and time. Our goal is to be able to...
Quasar Studies Confirm Einstein Prediction
When theories aren't borne out by observation, the problem just may be the size of the dataset. As witness recent work on gravitational lensing, that phenomenon where light is distorted and magnified by the gravitational pull of galaxies and other matter as it makes its immense journey from distant quasars to the Earth. Such lensing has been observed for over a decade, but just how the light is magnified, and on what scale, has until now been an elusive question. And answers to it haven't seemed to fit the standard model of cosmology, one in which visible galaxies represent only a small part of the mass of a universe seemingly filled with dark matter. Now researchers from the Sloan Digital Sky Survey (SDSS) have been able to perform a large-scale study of such magnification, and their theories do gibe with the standard model. The team was able to measure the brightness of some 200,000 quasar sources and determine the precise magnification caused by gravitational lensing. The new...
A Star Sculpture on Hubble’s Anniversary
Hard to believe that it was fully fifteen years ago today that the Hubble Space Telescope was placed into orbit from the Space Shuttle Discovery. Hubble's list of achievements has been outstanding, from detecting proto-galaxies whose light was emitted less than a billion years after the Big Bang to providing data that helped astronomers confirm the age of the universe, now calculated at some 13.7 billion years. And don't forget the extraordinary moments closer to home, such as the space telescope's views of comet Shoemaker-Levy 9, the famous 'string of pearls,' hitting Jupiter in 1994. Hubble's 700,000 images have provided views up to ten times sharper than any previous telescope could offer. The image above, a part of the Eagle Nebula, shows a tower of cold gas and dust being shaped by the light of hot new stars. It was taken with Hubble's Advanced Camera for Surveys (ACS), providing a picture so sharp that, at full resolution, the image could be blown up to the size of a billboard...
Physical Constant Unchanged After All?
More on the 'fine structure constant,' that fundamental number that seems to be crucial to our understanding of electromagnetism, and therefore the way the universe works. Our recent story on Michael Murphy and his Cambridge team discussed findings from the Keck I telescope on Mauna Kea that suggested subtle changes to the value of the fine structure constant since the earliest era of the universe. But those findings remain highly controversial, as was apparent on Monday the 18th. That was the day that astronomer Jeffrey Newman (Lawrence Berkeley National Laboratory) presented data from the DEEP2 redshift project, a five-year survey of galaxies more than seven light years away. Speaking at the annual meeting of the American Physical Society (APS) in Tampa, Newman said his team's results showed no change to the constant within one part in 30,000. "The fine structure constant sets the strength of the electromagnetic force, which affects how atoms hold together and the energy levels...