About 1.4 million years from now, the K-class star Gliese 710, now 64 light years distant in the constellation Serpens, will brush past our Solar System. Moving to within 50,000 AU, the star could be expected to have an unsettling effect on cometary orbits in the Oort Cloud, perhaps dislodging some of these comets to cause them to move into our inner planetary system. An interesting scenario, particularly remembering speculation that comets were a source of water for the early Earth, and may perform a similar function in other young systems. So just how common are such celestial encounters? We may have one at our very doorstep in the form of Proxima Centauri. The Pale Red Dot campaign that began yesterday is focusing on a red dwarf that is roughly 15,000 AU from the close binary stars Centauri A and B. If you think about what our system would look like with a red dwarf at the inner edge of the Oort Cloud, you can see that Proxima may play a large role in the evolution of the...
Stellar Age: Recalibrating Our Tools
Making the call on the age of a star is tricky business. Yet we need to master the technique, for stellar age is a window into a star's astrophysical properties, important in themselves and for understanding the star in the context of its interstellar environment. And for those of us who look at SETI and related issues, the age of a star can be a key factor -- is the star old enough to have produced life on its planets, and perhaps a technological civilization? Until recently, luminosity and surface temperature were the properties that helped us make a rough estimate of a star's age, which gives insight into how challenging the problem is. These are factors that, while they do change over time, give us only approximations of age. More recently, researchers have learned to study sound waves deep in the stellar interior, a method that is confined to bright targets and cannot help us with vast numbers of dimmer stars. Called asteroseismology, this method has helped our estimates of...
‘Time Delays’ and Exploding Stars
With our focus on nearby stars for both exoplanet detection and SETI work, I don't often find the time to talk about cosmology and 'deep sky' observations, although galaxy structure and formation are an interest of mine. But today I have a story too good to pass up, involving using gravitational lensing and time delays in how light reaches us to investigate events at the edge of the visible universe. In such work, the curvature of spacetime itself is part of our toolkit. Consider four images found around a foreground galaxy that were created by a background supernova. Here celestial alignments lead us to successful prediction, and for the first time, a supernova appears where astronomers have said it would. Or I should say, 're-appears.' The elliptical galaxy in question is located within the galaxy cluster MACS J1149+2223, which since 2012 has been known to lie between us and a background galaxy whose light is being magnified by the lens of the cluster. In November of 2014,...
ACEsat: Alpha Centauri and Direct Imaging
A dedicated spacecraft just to investigate the Alpha Centauri system? I've been fascinated with the nearest stars since boyhood, so the ACEsat concept Ashley Baldwin writes about today would have my endorsement. But budgetary realities and practical mission planning might demand a larger instrument capable of studying more distant targets. Dr. Baldwin, a committed amateur astronomer, is consultant psychiatrist at the 5 Boroughs Partnership NHS Trust (Warrington, UK). His deep knowledge of telescope technologies has served us well in the past, and now takes us into the realm of mission planning beyond the James Webb Space Telescope. by Ashley Baldwin ACEsat is a revolutionary all silicon carbide, 45 cm telescope concept with a bespoke built in Phase Induced Amplitude Apodisation (PIAA) coronagraph designed to image planets (in five selected visible-wavelength bands from 400-700 nm) in the habitable zones of Alpha Centauri A and B. It was designed to take advantage of studies that show...
Extraterrestrial Life: The Giants are Coming…
Finding a biological marker in the atmosphere of an exoplanet is a major goal, but as Ignas Snellen argues in the essay below, space-based missions are not the only way to proceed. A professor of astronomy at Leiden University in The Netherlands, Dr. Snellen makes a persuasive case that technologies like high dispersion spectroscopy and high contrast imaging are at their most effective when deployed at large observatories on the ground. A team of European observers he led has already used these techniques to determine the eight-hour rotation rate of Beta Pictoris b. We'll need carefully conceived space missions to study those parts of the spectrum inaccessible from the ground, but these will find powerful synergies with the next generation of giant Earth telescopes planned for operations in the 2020s. by Ignas Snellen While I was deeply involved by my PhD project, studying the active centers of distant galaxies, a real scientific revolution was unfolding in a very different field of...
The Shape of Space Telescopes to Come
Planning and implementing space missions is a long-term process, which is why we're already talking about successors to the James Webb Space Telescope, itself a Hubble successor that has yet to be launched. Ashley Baldwin, who tracks telescope technologies deployed on the exoplanet hunt, here looks at the prospects not just for WFIRST (Wide-Field InfraRed Survey Telescope) but a recently proposed High-Definition Survey Telescope (HDST) that could be a major factor in studying exoplanet atmospheres in the 2030s. When he is not pursuing amateur astronomy at a very serious level, Dr. Baldwin serves as a consultant psychiatrist at the 5 Boroughs Partnership NHS Trust (Warrington, UK). by Ashley Baldwin ?"It was the best of times, it was the worst of times..." Dickens apart, the future of exoplanet imaging could be about two telescopes rather than two cities. Consider the James Webb Space Telescope (JWST), and Wide-Field InfraRed Survey Telescope (WFIRST), which as we shall see have the...
A Supernova Trigger for Our Solar System
The interactions between supernovae and molecular clouds may have a lot to tell us about the formation of our own Solar System. Alan Boss and Sandra Keiser (Carnegie Institution for Science) have been exploring the possibility that our system was born as a result of a supernova 'trigger.' Their new paper follows up on work the duo have performed in recent years on how a cloud of dust and gas, when struck by a shock wave from an exploding star, could collapse and contract into a proto-star. The surrounding gas and dust disk would eventually give birth to the planets, although just how the latter occurs gets interesting, as the latest from Boss and Keiser reveals. Image: An artist's illustration of a protoplanetary disk. Credit: NASA/JPL-Caltech/T. Pyle (SSC). The new work extends Boss and Keiser's modeling of such events. But before getting into that, let's look at what we already know from observations of far more distant celestial objects. Working at radio and submillimeter...
Rosetta’s Day in the Sun
Today is perihelion day for the European Space Agency's Rosetta orbiter and the doughty Philae lander that, we can hope, may still be taking data even if we can't talk to it. Celebrating the event, ESA has made available a new interactive viewer based on images taken with Rosetta's navigation camera (NAVCAM). At the end of July, almost 7000 NAVCAM images were available through the Archive Image Browser, a number that will increase as the mission continues. Now we have an interactive tool that taps all those NAVCAM images. You can have a look at the tool here. With the ability to zoom in and out, rotate the view and move across the comet, the viewer adds features like texture maps and trajectory diagrams showing where various images of the comet were taken, linking to the NAVCAM database to allow downloads of the relevant images. ESA will also be doing a Google Hangout on what it's calling Rosetta's Day in the Sun at 1300 UTC (0900 EDT). Hard to believe we've already spent a year...
A Cosmological Fade to Black
Some writers immerse us so deeply in time that present-day issues are dwarfed by immensity. I always think of Olaf Stapledon and Star Maker (1937) in this regard, but consider Arthur C. Clarke's The City and the Stars (1956), in which we see the city Diaspar on the Earth of a billion years from now. And even Clarke's story is trumped by Greg Bear, whose City at the End of Time (2008), something of an homage not just to Clarke but to William Hope Hodgson as well, takes us to the Kalpa, a place and a civilization that is trying to ward off the breakdown of physical laws one hundred trillion years hence. With the Bear novel we enter the realm of extreme cosmology. Here spacetime itself is threatened by an entity intent on destroying it, creating a Chaos that harks back to ancient Earth myth. The human race is scattered across the cosmos, the galaxies themselves burned out husks. I also mentioned Hodgson above. The English writer (1877-1918), who would die at Ypres, produced a vast novel...
The View from Outside the Galaxy
The Russian Federal Space Agency (Roscosmos) has recently released a video (viewable here on YouTube) showing how a number of celestial objects might look if they were substantially closer to Earth than they are. The image of the Andromeda galaxy and its trillion stars projected against an apparent Earthscape is below. Unfortunately, this seems to be an astronomical image inserted into a view that purports to show what we would see in visible light. What we would actually see if we were standing in such a location is much different. After all, astronomical images are teased out of lengthy exposures in carefully chosen wavelengths. In reality the Andromeda galaxy is gigantic even when viewed from 2.5 million light years, but I doubt the average person has any idea where it is in the sky. Although considerably wider than the Moon as seen from Earth, M31 is visually faint, a fact that reminds us of the importance of photographs and charged coupled devices (CCDs) in light gathering as we...
Perytons: A Microwave Solution
Radio bursts scant milliseconds long that have been reported at the Parkes radio telescope in New South Wales -- so-called ‘perytons’ -- turn out to be the product of microwave ovens. The Case of the Puzzling Perytons, as Earl Stanley Gardner might have titled it, appeared in these pages earlier, with alliteration intact, when Jim Benford tackled it in Puzzling Out the Perytons. You’ll recall that Benford thought microwave ovens were involved, and now we learn that the Parkes team had independently reached the same conclusion before he arrived. Moreover, the authors of the Parkes paper had already embarked upon an investigation that now yields positive results. Make no mistake, this is a useful finding, even if it has generated a certain degree of understandable banter. After all, we’re looking for emissions from deep space but fending off spurious signals generated by staff lunching on the grounds of the observatory itself. The larger picture, though, is that the kind of signals our...
Enter ‘Galactic Archaeology’
I've used the term 'interstellar archaeology' enough for readers to know that I'm talking about new forms of SETI that look for technological civilizations through their artifacts, as perhaps discoverable in astronomical data. But there is another kind of star-based archaeology that is specifically invoked by the scientists behind GALAH, as becomes visible when you unpack the acronym -- Galactic Archaeology with HERMES. A new $13 million instrument on the Anglo-Australian Telescope at Siding Spring Observatory, HERMES is a high resolution spectrograph that is about to be put to work. Image: I can't resist running this beautiful 1899 photograph of M31, then known as the Great Andromeda Nebula, when talking about our evolving conception of how galaxies form. Credit: Isaac Roberts (d. 1904), A Selection of Photographs of Stars, Star-clusters and Nebulae, Volume II, The Universal Press, London, 1899. Via Wikimedia Commons. And what an instrument HERMES is, capable of providing spectra in...
In Search of Colliding Stars
How often do two stars collide? When you think about the odds here, the likelihood of stellar collisions seems remote. You can visualize the distance between the stars in our galaxy using a method that Rich Terrile came up with at the Jet Propulsion Laboratory. The average box of salt that you might buy at the grocery store holds on the order of five million grains of salt. Two hundred boxes of salt, then, make a billion grains, while 20,000 boxes give us 100 billion. That’s now considered a low estimate of the number of stars in our galaxy, which these days tends to be cited at about 200 billion, but let’s go with the low figure because it’s still mind-boggling. So figure you have 20,000 boxes of salt and you spread the grains out to mimic the actual separation of stars in the part of the galaxy we live in. Each grain of salt would have to be eleven kilometers away from any of its neighbors. These are considerable distances, to say the least, but of course there are places in the...
Starship Detection: The K2 Perspective
'Classical' SETI, if I can use that term, is based on studying the electromagnetic spectrum primarily in the radio wavelengths thought most likely to be used for communication by an extraterrestrial civilization. SETI's optical component is largely focused on searching for signals intended as communication. What is now being called Dysonian SETI is a different approach, one based on gathering observational evidence that may already be in our archives, data that demonstrate the existence of extraterrestrial activity far beyond our capability. Just as a Dyson Sphere would reveal the workings of a civilization of Kardashev Type II -- producing something like ten billion times the energy of a Type I culture -- the detection of a starship would show us technology in action, even if the craft were, as Ulvi Yurtsever and Steven Wilkinson have speculated, a vehicle pushing up against light speed millions of light years away. As physicist Al Jackson has tackled starship detection in recent...
Starship Observational Signatures
Now and again in relatively rarefied SETI discussions the topic of starship detection comes up. Specifically, if there were a starship moving through the interstellar medium in the general vicinity of our perch in the Orion Arm, would we be able to detect any sort of signature in our astronomical data? Centauri Dreams regular Al Jackson has looked into this for a variety of starship types (and discussed the matter at Starship Congress in 2013), and so has Gregory Benford, whose 2006 novelette "Bow Shock" describes the detection of an object whose synchrotron radiation fits the signature of the bow shock of a craft something like a Bussard ramjet. We also have a 1995 paper from Robert Zubrin on the spectral signatures of starships and, back in 1977, a JBIS paper by D. R. J. Viewing and colleagues on relativistic spacecraft detection. Various detection methods come to mind, but Al Jackson has pointed out that the simplest would be finding the signature of waste heat (see SETI: Starship...
Were There Planets Inside Mercury’s Orbit?
With the Mercury Messenger mission now coming to its end, it seems an appropriate time to speculate on why our inner Solar System looks the way it does. After all, as we continue finding new solar systems, we’re discovering many multi-planet systems with planets -- often more than one -- closer to their star than Mercury is to ours. We have Kepler to thank for these discoveries, its data analyzed in a number of recent papers including one arguing that about 5 percent of all Kepler stars have systems with tightly packed inner planets. The awkward acronym for such systems is STIP. Well, maybe it’s not all that awkward, and Kathryn Volk and Brett Gladman (University of British Columbia) have good cause to deploy it in their new paper, which focuses on this topic. They’re wondering why our Solar System lacks planets inside Mercury’s orbit, and they point to the paper I mentioned above (Lissauer et al, 2014) as well as another by Francois Fressin and colleagues that concludes that half of...
Scholz’s Star: A Close Flyby
The star HIP 85605 until recently seemed more interesting than it may now turn out to be. In a recent paper, Coryn Bailer-Jones (Max Planck Institute for Astronomy, Heidelberg) noted that the star in the constellation Hercules had a high probability of coming close enough to our Solar System in the far future (240,000 to 470,000 years from now) that it would pass through the Oort Cloud, potentially disrupting comets there. The possibility of a pass as close as .13 light years (8200 AU) was there, but Bailer-Jones cautioned that distance measurements of this star could be incorrect. His paper on nearby stellar passes thus leaves the HIP 85605 issue unresolved. Enter Eric Mamajek (University of Rochester) and company. Working with data from the Southern African Large Telescope (SALT) and the Magellan telescope at Las Campanas Observatory in Chile, Mamajek showed that the distance to HIP 85605 has been underestimated by a factor of ten. As Bailer-Jones seems to have suspected, the new...
Information and Cosmic Evolution
Keeping information viable is something that has to be on the mind of a culture that continually changes its data formats. After all, preserving information is a fundamental part of what we do as a species -- it's what gives us our history. We've managed to preserve the accounts of battles and migrations and changes in culture through a wide range of media, from clay tablets to compact disks, but the last century has seen swift changes in everyday products like the things we use to encode music and video. How can we keep all this readable by future generations? The question is challenging enough when we consider the short term, needing to read, for example, data tapes for our Pioneer spacecraft when we've all but lost the equipment needed to manage the task. But think, as we like to do in these pages, of the long-term future. You'll recall Nick Nielsen's recent essay Who Will Read the Encyclopedia Galactica, which looks at a future so remote that we have left the 'stelliferous' era...
What Comets Are Made Of
When the Rosetta spacecraft's Philae lander bounced while landing on comet 67P/Churyumov-Gerasimenko last November, it was a reminder that comets have a hard outer shell, a black coating of organic molecules and dust that previous missions, like Deep Impact, have also observed. What we'd like to learn is what that crust is made of, and just as interesting, what is inside it. A study out of JPL is now suggesting possible answers. Antti Lignell is lead author on a recent paper, which reports on the team's use of a cryostat device called Himalaya that was used to flash freeze material much like that found in comets. The procedure was to flash freeze water vapor molecules at temperatures in the area of 30 Kelvin (minus 243 degrees Celsius). What results is something called 'amorphous ice,' as explained in this JPL news release. Proposed as a key ingredient not only of comets but of icy moons, amorphous ice preserves the mix of water with organics along with pockets of space. JPL's Murthy...
A Stellar Correlation: Spin and Age
Figuring out how fast a star spins can be a tricky proposition. It's fairly simple if you're close by, of course -- in our Solar System, we can observe sunspot patterns on our own star and watch as they make a full rotation, the spin becoming obvious. From such observations we learn that how fast the Sun spins depends on where you look. At the equator, the rotation period is 24.47 days, but this rotation rate decreases as you move toward the poles. Differential rotation means that some regions near the Sun's poles can take as much as 38 days to make a rotation. Because of these issues, astronomers have chosen an area about 26 degrees from the equator, where large numbers of sunspots tend to appear, as the point of reference, giving us a rotation of 25.38 days. You can imagine how complicated solar rotation gets once we look at other stars. We can't resolve them to begin with, much less their 'starspots,' but what we can do is measure the decrease in light that starspots cause as they...