Thoughts on the End of the Kepler Mission

The Kepler spacecraft has been with us long enough (it launched in 2009) and has revealed so much about the stars in our galaxy that its retirement -- Kepler lacks the fuel for further science operations -- is cause for reflection. The end of great missions always gives us pause as we consider their goals and their accomplishments, and offer up our gratitude to the many people who made the mission happen. Let's try to back up and see things in their totality. Image: An artist's conception of Kepler at work. Credit: NASA/Ames/Dan Rutter. Kepler's job was essentially statistical, an attempt to look at as many stars as possible in a particular field of stars, so that we could gain insights into the distribution of planets there, and thus deduce something about likely conditions galaxy-wide. We didn't know in 2009 that there was statistically at least one planet around every star, nor did we know just how diverse the worlds Kepler found, more than 2,600 of them, would be. Moreover,...

read more

A Signature of Planetary Migration

Earlier in the week I talked about Astronomy Rewind, an ambitious citizen science project dedicated to recovering old astronomical imagery and digitizing it for comparison with new data. Now I’ve learned that another citizen science effort, Planet Finders, is working with simulated data from the Transiting Exoplanet Survey Satellite (TESS), planning to transition into real TESS data as soon as they become available. Have a look at this effort here if you are interested in becoming a beta tester. TESS will be a hugely significant exoplanet mission particularly in terms of nearby stars, so becoming a part of this project should be an exciting venture indeed. On with today’s post, which I would have actually run yesterday if I had read the paper soon enough, as it offers insights into Wednesday’s entry on protoplanetary disks. As we’ve seen, these can become the discovery grounds for young planets. In the case of the 2-million year old CI Tau, that meant an already confirmed gas giant...

read more

Red Dwarfs, ‘Superflares’ and Habitability

Given their ubiquity in the Milky Way, red dwarfs would seem to offer abundant opportunities for life to emerge. But we're a long way from knowing how habitable the planets that orbit them might be. While mechanisms for moderating the climate on tidally locked worlds in tight habitable zones continue to be discussed, the issue of flares looms large. That makes a new survey of 12 young red dwarfs, and the project behind it, of unusual interest in terms of astrobiology. What jumps out at the reader of Parke Loyd and team's paper is the superflare their work caught that dwarfed anything ever seen from our own Sun, a much larger star. It was enough to set Loyd, a postdoctoral researcher at Arizona State University, back on his heels. "When I realized the sheer amount of light the superflare emitted, I sat looking at my computer screen for quite some time just thinking, 'Whoa.'" He adds: "With the Sun, we have a hundred years of good observations. And in that time, we've seen one, maybe...

read more

An Infant System Laden with Gas Giants

We’ve never found a ‘hot Jupiter’ around a star as young as CI Tau. This well studied system, some 2 million years old, has drawn attention for its massive disk of dust and gas, one that extends hundreds of AU from the star. But radial velocity examination recently revealed CI Tau b, a hot Jupiter that in and of itself raises questions. Couple that to the likelihood of three other gas giant planets emerging in the disk with extreme differences in orbital radii and it’s clear that CI Tau challenges our ideas of how gas giants, especially hot Jupiters, emerge and evolve. Can a hot Jupiter form in place, or is migration from a much more distant orbit the likely explanation? The latter seems likely, and in that case, what was the mechanism here around such a young star? Most hot Jupiter host stars have lost their protoplanetary disks, which means that astronomers have been working with theoretical formation models to produce the observed tight orbits. And because about 1 percent of main...

read more

J1407: A New Look at Old Images

It was back in 2012 that Eric Mamajek (University of Rochester) and team discovered a possible ring system around the star J1407 in lightcurves originally taken in 2007, spawning subsequent work with Leiden Observatory's Matthew Kenworthy. And what a ring system it would be if confirmed. The diameter, based on the lightcurve, would be nearly 120 million kilometers. This would be a ring system nearly 200 times larger than the rings of Saturn, one containing an Earth's mass of dust particles, and in early studies, one housing over thirty separate rings. Image: Artist's conception of the extrasolar ring system circling the young giant planet or brown dwarf J1407b. The rings are shown eclipsing the young sun-like star J1407, as they would have appeared in early 2007. Credit: Ron Miller. The possible J1407 ring system provides a nice segue from yesterday's post on recovering astronomical images from a century's worth of scientific journals, as Centauri Dreams reader Andrew Tribick was...

read more

Kepler 1625b: Orbited by an Exomoon?

8,000 light years from Earth in the constellation Cygnus, the star designated Kepler 1625 may be harboring a planet with a moon. The planet, Kepler 1625b, is a gas giant several times the mass of Jupiter. What David Kipping (Columbia University) and graduate student Alex Teachey have found is compelling though not definitive evidence of a moon orbiting the confirmed planet. If we do indeed have a moon here, and upcoming work should be able to resolve the question, we are dealing, at least in part, with the intriguing scenario many scientists (and science fiction writers) have speculated about. Although a gas giant, Kepler 1625b orbits close to or within the habitable zone of its star. A large, rocky moon around it could be a venue for life, but the moon posited for this planet doesn't qualify. It's quite large -- roughly the size of Neptune -- and like its putative parent, a gaseous body. If we can confirm the first exomoon, we'll have made a major advance, but the quest for...

read more

TESS, Saint-Exupéry and the Sea

I like nautical metaphors as applied to the stars, my favorite being the words attributed to Antoine de Saint-Exupéry, French writer/aviator and author of poetic works about flight like Wind, Sand and Stars (1939), and a work familiar to most American students of French, Vol de nuit, published in English as Night Flight (1931). I think the Saint-Exupéry quote captures what it takes to contemplate far voyaging: "If you want to build a ship, don't drum up the men to gather wood, divide the work and give orders. Instead, teach them to yearn for the vast and endless sea." Image: Antoine de Saint-Exupery, whose work inspired, among many other things, my own decision to take up flying. I had to track down the quote because the last time it appeared in these pages, a reader wrote to tell me he had never found it in Saint-Exupéry. I hadn't either, which bothered me because I am a huge fan of the man's work. It certainly sounded like him. So I did some digging and turned...

read more

Proxima Centauri b: The Habitability Question

Proxima Centauri b is back in the news, although I'll confess that in my case, it's rarely out of my thoughts -- I've been obsessed with the Alpha Centauri system since my youth. The latest comes through work by Anthony Del Genio and colleagues (NASA GSFC), who describe in Astrobiology their new simulations with regard to potential habitability. You'll recall the issues here. A planet this close to its host star may well be tidally locked, with one side always facing the M-dwarf Proxima Centauri. Martin Turbet (Sorbonne Universités, Paris) and colleagues described possible climates on Proxima b in a 2016 paper, using a 3D climate model (GCM) to simulate the atmosphere and water cycle of the planet for its two possible rotation modes, a 1:1 and a 3:2 spin resonance (in other words, gravitational forces could keep Centauri b locked to Proxima or rotating 3 times for every 2 orbits of the star). The Solar System offers analogues: The Moon is in a 1:1 spin resonance with the...

read more

Water Delivery to the Early Earth

Thinking about supplying a young planet with water, the mind naturally heads for the outer reaches of the Solar System. After all, beyond the 'snowline,' where temperatures are cold enough to allow water to condense into ice grains, volatiles are abundant (this also takes in methane, ammonia and carbon dioxide, all of which can condense into ice grains). The idea that comets or water-rich asteroids bumping around in a chaotic early Solar System could deliver the water Earth needed for its oceans makes sense, given our planet's formation well inside the snowline. We've just looked at Ceres, in celebration of the Dawn mission's achievements there, and we know that Ceres has an icy mantle and perhaps even an ocean beneath its surface. At 2.7 AU, the dwarf planet is right on the edge of traditional estimates for the snowline as it would have occurred in the early days of planet formation. Obviously, the snowline has a great deal to do with various models about the accretion of solid...

read more

Extending the Habitable Zone

Not long ago, Ramses Ramirez (Earth-Life Science Institute, Tokyo) described his latest work on habitable zones to Centauri Dreams readers. Our own Alex Tolley (University of California) now focuses on Dr. Ramirez' quest for 'a more comprehensive habitable zone,' examining classical notions of worlds that could support life, how they have changed over time, and how we can broaden current models. We can see ways, for example, to extend the range of habitable zones at both their outer and inner edges. A look at our assumptions and the dangers implicit in the term 'Earth-like' should give us caution as we interpret the new exoplanet detections coming soon through space- and ground-based instruments. by Alex Tolley The Plains of Tartarus - Bruce Pennington In 1993, before we had detected any exoplanets, James Kasting, Daniel Whitmire, and Ray Reynolds published a modeled estimate of the habitable zone in our solar system [1]. They stated: "A one-dimensional climate model is used to...

read more

Transiting Debris around a White Dwarf

Who among us hasn't speculated about the ultimate fate of the Solar System? The thought of our Sun growing into a vast red giant has preoccupied writers and readers since the days when H. G. Wells so memorably captured a far future scene through the eyes of his Time Traveler. And what a scene that was: "I cannot convey the sense of abominable desolation that hung over the world. The red eastern sky, the northward blackness, the salt dead sea, the stony beach crawling with these foul, slow-stirring monsters, the uniform poisonous-looking green of the lichenous plants, the thin air that hurts one's lungs: all contributed to an appalling effect. I moved on a hundred years, and there was the same red sun—a little larger, a little duller—the same dying sea, the same chill air, and the same crowd of earthy crustacea creeping in and out among the green weed and the red rocks. And in the westward sky, I saw a curved pale line like a vast new moon." Wells was working on a...

read more

‘Rogue’ Planet Population in the Galaxy

We've recently looked at gas giant planet formation, and specifically the stages in which Jupiter seems to have formed -- this is the work of Thomas Kruijer (University of Münster) and colleagues as summarized in A Three Part Model for Jupiter's Formation. Whether or not the details of Kruijer and team's model are correct, it seems evident that gas giants must form quickly, based on current theories. These involve the formation of a large solid core, with gas accretion building up a thick atmosphere at a time when the disk around the parent star is still rich in materials. In this thinking, planets like the Earth come along much later than the gas giants that are the first to form. Get a few million years into the evolution of a stellar system and there should be evidence of a gas giant, if one is going to form, but terrestrial worlds can take up to 100 million years to emerge. This has captured the interest of Nader Haghighipour (University of Hawaii), whose work was presented at...

read more

Finding Jupiter’s Water

One of the memorable things about 1995 (and this was also the year of the first detection of an exoplanet around a main sequence star) was the release of the Galileo spacecraft's descent probe. Dive into that howling maelstrom, it would seem, and instant obliteration should follow. But the probe had been designed with a heavy duty heat shield to protect it during its journey. It kept transmitting after scorching its way into Jupiter's atmosphere at 47 kilometers per second, 30 km/sec faster than Voyager 1. The probe returned data for fully 58 minutes before its demise. Here's how two science fiction novelists handle a descent into the Jovian clouds: Slowly, the fine fretwork of the ammonia cirrus clouds above him became obscured by brown and salmon layers of intervening chemistry, the air stained a nicotine-coloured haze of complex carbon molecules. Soon it was warmer than a summer's day out there, and already the gondola was enduring more than ten atmospheres of pressure, the...

read more

A ‘Flyby’ Model for Early Solar System Evolution

How close would a passing star have to come to produce drastic results on the outer Solar System? According to researchers at the Max Planck Institute for Radio Astronomy in Bonn, roughly 3 times Neptune's distance would be disruptive enough to explain what we see beyond that planet's orbit today. Led by Susanne Pfalzner, the scientists have been modeling close stellar flybys of other planetary systems for years, but have only recently turned their attention to the eccentricities of our own system, where conditions beyond Neptune pose questions. Image: Artist's concept of a stellar system in the making with a protoplanetary disk surrounding a young star. Credit: NASA JPL-Caltech. A look at the Solar System's formation highlights the problematic nature of the process. Out to the orbit of Neptune, planets, dwarf planets and asteroids orbit with only small differences in orbital inclination, indicative of the flatness of the original disk from which all these objects drew their birth...

read more

New Insights into Beta Pictoris b

Beta Pictoris b continues to instruct us in the ways of exoplanet finding. Consider: The young world was identified in 2008 through direct imaging via the Very Large Telescope at the European Southern Observatory site at Cerro Paranal (Chile). Actually seeing an exoplanet is no small feat. We are in this case talking about a bright A-class star some 63 light years away in the wash of whose light we can pick out a comparatively small planet. But it was also a young planet, putting out plenty of heat amidst the large debris disk, the first such disk ever imaged. The earliest detections of planets around main sequence stars have involved radial velocity, using Doppler methods that can tell us the rate at which the star moves toward and then away from the Earth as it is affected by the planet orbiting it. But radial velocity is a tough call at Beta Pictoris because these changes are tiny, and we are dealing with a star those fast rotation and stellar pulsations obscure the needed signal....

read more

The Prevalence of ‘Water Worlds’

The first time I ran into the term 'water world,' it had a seductive quality. After all, we think of habitable zones in terms of water on the surface, and a world with an overabundance of water suggested a kind of celestial Polynesia, archipelagos surrounded by a planet-circling, azure sea. But we immediately run into problems when we think about planets with substantially more water than Earth. For one thing, we may have no land at all. Let's leave aside the icy moons of our Solar System that may well contain oceans beneath their surface and concentrate on exoplanets in the interesting size range of two to four times the size of Earth. We have to ask what would happen if a planet were completely covered with water, with no run-off of nutrients from exposed rock. Such an ocean could be starved of key elements like phosphorus. Or how about a planet with a high-pressure zone of ice effectively cutting off the global ocean from the rocky mantle? A world with enough water -- 50 times...

read more

Omega Centauri: Improbable Venue for Life?

Although it appears in the same constellation as seen from Earth (Centaurus), Omega Centauri has nothing to do with the Alpha Centauri stars that so interest interstellar flight theorists. The brightest globular cluster visible in our skies, Omega Centauri is anything but close (16,000 light years out) and, containing several million stars, is the largest globular cluster in our galaxy. We may in fact be looking at the core of a dwarf galaxy once absorbed by the Milky Way. But although it's quite distant, Omega Centauri may be the source of the relatively nearby Kapteyn's Star, just 13 light years from the Sun. Where this gets intriguing is that Kapteyn's Star, (named after Dutch astronomer Jacobus Kapteyn) is known to have at least two planets, one of them considered the oldest known potentially habitable planet -- let's call it a 'temperate Super-Earth', as Guillem Anglada-Escudé and team have done -- at 11 billion years old. Steven Kane (UC-Riverside), working with graduate...

read more

Probing Ultrahot Jupiters

Speaking of getting really, really close to a star, as we were yesterday in our discussion of the Parker Solar Probe, I couldn’t help but turn to new computer models of the ‘ultrahot Jupiter’ WASP-121b. I still find it delightful that the earliest exoplanet detections involved a category of planet that few scientists had imagined existed. These days we routinely discuss gas giants blisteringly close to their hosts, and even manage to extract information about their atmospheres through transmission spectroscopy, but few people expected such planets when we began to discover them. In fact, Apollo 11’s Buzz Aldrin had a role to play in what may be considered to be the first prediction of the worlds we would start calling ‘hot Jupiters.’ Working with John Barnes on his novel Encounter with Tiber (Grand Central, 1996), Aldrin asked physicist Greg Matloff whether a hydrogen-helium atmosphere as found in a Jupiter-class world could survive in an inner stellar system. Here’s how Matloff...

read more

A ‘Rogue’ Object’s Strong Magnetic Field

Given the spectacular interactions between Io and Jupiter -- the moon plays a major role in shaping the planet’s magnetic field and contributes a cloud of particles originally produced by its volcanic activity -- it’s all but inevitable that a recently discovered ‘rogue’ object would be compared to the duo. The rogue in question is SIMP J01365663+0933473, a planetary mass object of perhaps 12 Jupiter masses that is at the boundary between brown dwarf and planet. Between 12 and 13 Jupiter masses is considered to be the deuterium burning limit; i.e., above this, we would expect a gaseous object to be a deuterium-burning brown dwarf. What an intriguing situation we find here. Originally found in data collected by the Very Large Array, SIMP J01365663+0933473 (which I’ll now mercifully shorten, as per the paper, to SIMP0136) has a magnetic field some 200 times stronger than Jupiter’s. The discovery marked the first radio detection of a possibly planetary mass object beyond our Solar...

read more

Plate Tectonics: Necessary for Habitability?

Just how important is plate tectonics for the development of complex life? We’ve learned that its continual churn, with material pushing up from ocean rifts and being subducted as it meets continental shelves, can moderate the Earth’s climate. Increasing temperatures are tamped down through the capture of excess carbon dioxide in rocks, which reduces potential greenhouse conditions. Lowering temperatures will produce the reverse effect. The result is a mechanism for maintaining stable temperatures that some have seen as necessary for life. "Volcanism releases gases into the atmosphere, and then through weathering, carbon dioxide is pulled from the atmosphere and sequestered into surface rocks and sediment," said Bradford Foley, assistant professor of geosciences at Penn State University. "Balancing those two processes keeps carbon dioxide at a certain level in the atmosphere, which is really important for whether the climate stays temperate and suitable for life." And indeed, most of...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Version 1.0.0

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives