Too much water helps planetary habitability not one bit. And while we find the availability of surface water a useful way of describing a potentially habitable world, we're learning that some planets may have water in such abundance that life may never have the chance to emerge. It would be a shame if the numerous worlds orbiting TRAPPIST-1 fell into this scenario, but a multidisciplinary team from Arizona State University is making a strong case for the prospect. What's wrong with water? Let Natalie Hinkel (Vanderbilt University) explain. Hinkel worked with ASU's Cayman Unterborn, Steven Desch and Alejandro Lorenzo on the question of water composition in these worlds. Coleridge's "Rime of the Ancient Mariner" comes to mind -- "Water, water, every where / Nor any drop to drink." But in this case, there is plenty to drink, which is precisely the problem. Says Hinkel: "We typically think having liquid water on a planet as a way to start life, since life, as we know it on Earth, is...
Red Dwarfs: Their Impact on Biosignatures
We’re in the midst of a significant period defining the biosignatures life can produce and determining how we might identify them. Centauri Dreams regular Alex Tolley today looks at a paper offering a unique contribution to this effort. The work of Sarah Rugheimer and Lisa Kaltenegger, the paper looks at how exoplanet spectra change for different types of host star and different epochs of planetary evolution. As Alex points out, the effects are profound, especially given the fact that red dwarfs will be our testbed for biosignature detection as we probe planetary atmospheres during transits around nearby stars. How stellar class affects our analysis will affect our strategies especially as we probe early Earth atmosphere equivalents. What will we find, for example, at TRAPPIST-1? By Alex Tolley As the search for life on exoplanets ramps up, the question arises as to which types of stars represent the best targets. Based on distribution, M-Dwarfs are very attractive as they represent...
Maxing Out Kepler
What happens to a spacecraft at the end of its mission depends on where it's located. We sent Galileo into Jupiter on September 21, 2003 not so much to gather data but because the spacecraft had not been sterilized before launch. A crash into one of the Galilean moons could potentially have compromised our future searches for life there, but a plunge into Jupiter's atmosphere eliminated the problem. Cassini met a similar fate at Saturn, and in both cases, the need to keep a fuel reserve available for that final maneuver was paramount. Now we face a different kind of problem with Kepler, a doughty spacecraft that has more than lived up to its promise despite numerous setbacks, but one that is getting perilously low on fuel. With no nearby world to compromise, Kepler's challenge is to keep enough fuel in reserve to maximize its scientific potential before its thrusters fail, thus making it impossible for the spacecraft to be aimed at Earth for data transfer. In an Earth-trailing orbit...
Lab Work on ‘Super-Earth’ Atmospheres
How we do laboratory work on exoplanet atmospheres is an interesting challenge. We’ve worked up models of the early Earth’s atmosphere and conducted well-known experiments on them. Still within our own system, we’ve looked at worlds like Mars and Titan and, with a good read on their atmospheric chemistry, can reproduce an atmosphere within the laboratory with a fair degree of accuracy. In the realm of exoplanets, we’re in the early stages of atmosphere characterization. We’re getting good results from transmission spectroscopy, which analyzes the light from a star as it filters through a planetary atmosphere during a transit. But thus far, the method has mostly been applied to gas giants. Getting down to the realm of rocky worlds is the next step, one that will be aided by space-based assets like the James Webb Space Telescope. Can lab work also help? Probing the Atmosphere of a ‘Super-Earth’ Worlds smaller than gas giants are plentiful. Indeed, ‘super-Earths’ are the most common...
Extracting Exoplanet Topography from Transit Data
How do we go from seeing an exoplanet as a dip on a light curve or even a single pixel on an image to a richly textured world, with oceans, continents and, perhaps, life? We've got a long way to go in this effort, but we're already having success at studying exoplanet atmospheres, with the real prospect of delving into planets as small as the Earth around nearby red dwarfs in the near future. Atmospheric detection and analysis can help us in the search for biosignatures. But I was surprised when reading a recent paper to realize just how many proposals are out there to analyze planetary surfaces pending the development of next-generation technologies. Back in 2010, for example, I wrote about Tyler Robinson (University of Washington), who was working on how we might detect the glint of exo-oceans (see Light Off Distant Oceans for more on Robinson's work). And Robinson's ideas are joined by numerous other approaches. I won't go into detail on any of these, but l do want to illustrate...
Probing a ‘Hot Saturn’
When researchers talk about 'hot Saturns,' it's natural to imagine a ringed planet in a close orbit to its star, rings being Saturn's most prominent feature. But WASP-39b hardly fits this picture. Some 700 light years from Earth in the constellation Virgo, this is a tidally locked world that is 20 times closer to its star than the Earth is to the Sun. WASP-39 itself is a G-class star of about 90 percent of the Sun's mass. We have no evidence of planetary rings here, but we do see a planet whose temperature reaches 776 degrees Celsius, with a nightside not much cooler. What keeps this world from being called a 'hot Jupiter' is its low density coupled with a large radius, some 1.27 times that of Jupiter (its density is about 0.28 times that of Jupiter). 'Puffy' planets like this show density levels far more like Saturn, and they orbit close to their stars, accounting for their extended atmospheres. WASP-39b's atmosphere appears free of high-altitude clouds, allowing detailed study of...
What We Are Trying to Find
What is it we are looking for when we probe nearby planetary systems? Certainly the search for life elsewhere compels us to find planets like our own around stars much like the Sun. But surely our goal isn't restricted to finding duplicate Earths, if indeed they exist. A larger goal would be to find life on planets unlike the Earth -- perhaps around stars much different from the Sun -- which would give us some idea how common living systems are in the galaxy. And beyond that? The ultimate goal is simply to find out what is out there. That takes in outcomes as different as widespread microbial life, perhaps leading to more complex forms, and barren worlds in which life never emerged. A galaxy filled with life vs. a galaxy in which life is rare offers us two striking outcomes. We ignore preconceptions to find out which is true. Flaring Red Stars Let's try to put Proxima Centauri's recent flare, discussed yesterday, in context. Events like this highlight our doubts about the viability...
Proxima Flare May Force Rethinking of Dust Belts
News of a major stellar flare from Proxima Centauri is interesting because flares like these are problematic for habitability. Moreover, this one may tell us something about the nature of the planetary system around this star, making us rethink previous evidence for dust belts there. But back to the habitability question. Can red dwarf stars sustain life in a habitable zone much closer to the primary than in our own Solar System, when they are subject to such violent outbursts? What we learn in a new paper from Meredith MacGregor and Alycia Weinberger (Carnegie Institution for Science) is that the flare at its peak on March 24, 2017 was 10 times brighter than the largest flares our G-class Sun produces at similar wavelengths (1.3 mm). Image: The brightness of Proxima Centauri as observed by ALMA over the two minutes of the event on March 24, 2017. The massive stellar flare is shown in red, with the smaller earlier flare in orange, and the enhanced emission surrounding the flare that...
Detecting Early Life on Exoplanets
At the last Tennessee Valley Interstellar Workshop, I was part of a session on biosignatures in exoplanet atmospheres that highlighted how careful we have to be before declaring we have found life. Given that, as Alex Tolley points out below, our own planet has been in its current state of oxygenation for a scant 12 percent of its existence, shouldn't our methods include life detection in as wide a variety of atmospheres as possible? A Centauri Dreams regular, Alex addresses the question by looking at new work on chemical disequilibrium and its relation to biosignature detection. The author (with Brian McConnell) of A Design for a Reusable Water-Based Spacecraft Known as the Spacecoach (Springer, 2016), Alex is a lecturer in biology at the University of California. Just how close are we to an unambiguous biosignature detection, and on what kind of world will we find it? by Alex Tolley Image: Archaean or early Proterozoic Earth showing stromatolites in the foreground. Credit: Peter...
Streamlining Exoplanet Validation
Between Kepler and the ensuing K2 mission, we’ve had quite a haul of exoplanets. Kepler data have been used to confirm 2341 exoplanets, with NASA declaring 30 of these as being less than twice Earth-size and in the habitable zone. K2 has landed 307 confirmed worlds of its own. K2 offers a different viewing strategy than Kepler’s fixed view of over 150,000 stars. While the transit method is still at work, K2 pursues a series of observing campaigns, its fields of view distributed around the ecliptic plane, and with photometric precision approaching the original. Why the relationship with the ecliptic? Remember that what turned Kepler into K2 was the failure of two reaction wheels, the second failing less than a year after the first. Working in the ecliptic plane minimizes the torque produced by solar wind pressure, thus minimizing pointing drift and allowing the spacecraft to be controlled by its thrusters and remaining two reaction wheels. Each K2 campaign is limited to about 80 days...
TRAPPIST-1: Planets Likely Rich in Volatiles
Yesterday we saw that, by pushing the Hubble telescope to its limits, we could make a call about three of the TRAPPIST-1 planets -- d, e and f -- and one possibility for their respective atmospheres. The Hubble data rule out puffy atmospheres rich in hydrogen for these three (TRAPPIST-1 g needs more work before a definitive call can be made there). This is a useful finding, for hydrogen is a greenhouse gas that can heat planets close to their star beyond our usual norms for habitability. Set out deeper in a stellar system, we can think of Neptune, a gaseous world far different from the kind of rocky, terrestrial-class planets most likely to produce surface water. So on balance, the Hubble work, while not telling us anything more about potential atmospheres in this system, does rule out the Neptune scenario. That leaves open the question of whether future instruments will find more compact atmospheres. The James Webb Space Telescope should be able to probe these worlds, perhaps...
Probing TRAPPIST-1 Planetary Atmospheres
This week offers two interesting papers about the TRAPPIST-1 planets, one from Hubble data looking at the question of hydrogen in potential planetary atmospheres, the other drawing on data from the European Southern Observatory's Paranal facility as well as the Spitzer and Kepler space-based instruments. We'll look at the Hubble work this morning and move on to the second paper tomorrow. Both offer meaty stuff to dig into, for we're beginning to characterize these seven planets, which form a unique laboratory for the study of red dwarf systems. Published in Nature Astronomy, the Hubble results screen four of the TRAPPIST-1 planets -- d, e, f and g -- to study their potential atmospheres in the infrared, using Hubble's Wide Field Camera 3 in data collected from December 2016 to January 2017. The data allow us to rule out a cloud-free hydrogen-rich atmosphere on three of these worlds, while TRAPPIST-1g needs further observation before a hydrogen atmosphere can be conclusively excluded....
Detection of Extragalactic Planets?
I was pleased to be a guest on David Livingston's The Space Show last week. David's questions are always well chosen, as were those of the listeners who participated in the show, and we spoke broadly about the interstellar effort and what it will take to eventually get human technologies to the stars. The show is now available in David's archives. I suspect that if David and I had spoken a couple of days later, the topic would have gotten around to gravitational microlensing, and specifically, the news about planets in other galaxies. On the surface, the story seems sensational. In our own galaxy, we can use radial velocity and transit studies on stars, but here our working distances are constrained by our method. The original Kepler field of view in Cygnus, Lyra and Draco, for example, contained stars ranging from 600 to 3000 light years out -- get beyond 3000 light years and transits are not detectable. Image: The Sun is about 25,000 light years from the center of the galaxy, about...
The Likelihood of Massive Exomoons
Are there large moons -- perhaps Earth-sized or even bigger -- around gas giant planets in habitable zones somewhere in the Milky Way? It’s a wonderful thought given how it multiplies the opportunities for life to find a foothold even in systems much different from our own. Centauri Dreams regular Andrew Tribick recently passed along a new paper that addresses the question in an interesting way, by modeling moon formation and orbital evolution under widely varying conditions of circumplanetary disk composition and evolution. We’re entering new terrain from this site’s perspective, because I can’t recall going deeply into circumplanetary disks before, at least not in the exoplanet context. But Marco Cilibrasi (Università di Pisa, Italy) and colleagues take us through the necessary background issues. We have two primary models for giant planet formation inside a protoplanetary disk, one being core accretion, when collision and coagulation occurs among dust particles to build up a...
M-Dwarf Planets: ExTrA and TRAPPIST-1
A new project called Exoplanets in Transits and their Atmospheres (ExTrA) has been set in motion at the European Southern Observatory’s site at La Silla (Chile). Funded by the European Research Council and the French Agence National de la Recherche, ExTrA’s three 0.6-metre telescopes will be operated remotely from Grenoble, France. This is an exoplanet transit effort centered around finding and characterizing Earth-sized planets orbiting M-dwarf stars. Not an easy task from the ground, as lead researcher Xavier Bonfils makes clear, though if you’re going to attempt it, northern Chile offers optimum conditions: “La Silla was selected as the home of the telescopes because of the site’s excellent atmospheric conditions. The kind of light we are observing — near-infrared — is very easily absorbed by Earth’s atmosphere, so we required the driest and darkest conditions possible. La Silla is a perfect match to our specifications.” To do its work, ExTrA weds spectroscopic information to...
Planet Mimicry: Disk Patterns in Infant Systems
The wrong initial assumption can easily lead anyone down a blind alley. The problem comes across loud and clear in new work from Marc Kuchner (NASA GSFC) and colleagues, which Kuchner presented at the recent meeting of the American Astronomical Society in Washington. At issue is the matter of the disks of gas and dust around young stars, in many of which we can find patterns such as rings, arcs and spirals that suggest the formation of planets. But are such patterns sure indicators or merely suggestions? Kuchner's team has been looking at the question for several years now, presenting in a 2013 paper the possibility that a phenomenon called photoelectric instability (PeI) can explain the narrow rings we see in some disk systems. PeI happens when high-energy ultraviolet light strikes dust and ice grains, stripping away electrons. The electrons then strike and heat gas in the disk, causing gas pressure to increase and more dust to be trapped. Rings can form that begin to oscillate,...
K2-138: Multi-Planet System via Crowdsourcing
As Centauri Dreams readers know, I always keep an eye on the K2 mission, the rejuvenated Kepler effort to find exoplanets with a spacecraft that had originally examined 145,000 stars in Cygnus and Lyra. Now working with different fields of view, K2 has examined a surprisingly large number of stars, some 287,309, according to this Caltech news release. Digging around a bit, I discovered that each 80-day campaign brings in data on anywhere from 13,000 to 28,000 targets, all released to the public within three months of the end of the campaign. In the paper we'll discuss today, this influx is referred to as a 'deluge of data.' Our datasets just continue to grow in a time of exploration that seems unprecedented in scientific history. I've heard it compared to the explosion in knowledge of microorganisms after their detection by van Leeuwenhoek in the 17th Century, though of course it also conjures up thoughts of early exploratory voyages as humans pushed into hitherto unknown terrain....
Substellar Objects in Orion
Although I carry on about upcoming observatories on the ground and in space, I never want to ignore the continuing contribution of the Hubble telescope to our understanding of planet and star formation. As witness the latest deep survey made by team lead Massimo Robberto (Space Telescope Institute) and colleagues, which used the instrument to study small, faint objects in the Orion Nebula. At a relatively close 1,350 light years from Sol, the nebula is something of a proving ground for star formation, and now one that is yielding data on small stars indeed. Identifying some 1,200 candidate reddish stars, the survey tapped Hubble's infrared capabilities to extract 17 candidate brown dwarf companions to red dwarf stars, one brown dwarf pair and one brown dwarf with a planetary companion. We also learn that a planetary mass companion to a red dwarf has turned up as well as, interestingly enough, a planet-mass companion to another planet, the duo orbiting each other in the absence of a...
PicSat: Eye on Beta Pictoris
To understand why Beta Pictoris is receiving so much attention among astronomers, particularly those specializing in exoplanets, you have only to consider a few parameters. This is a young star, perhaps 25 million years old, one with a well observed circumstellar disk, the first actually imaged around another star. We not only have a large gas giant in orbit here, but also evidence of cometary activity as seen in spectral data. ? Pic is also relatively nearby at 64 light years. Image: This composite image represents the close environment of Beta Pictoris as seen in near infrared light. This very faint environment is revealed after a careful subtraction of the much brighter stellar halo. The outer part of the image shows the reflected light on the dust disc, as observed in 1996 with the ADONIS instrument on ESO's 3.6 m telescope; the inner part is the innermost part of the system, as seen at 3.6 microns with NACO on the Very Large Telescope. The newly detected source is more than 1000...
Exoplanet Prospects at Earth-based Observatories
Although I often write about upcoming space missions that will advance exoplanet research, we're also seeing a good deal of progress in Earth-based installations. In the Atacama Desert of northern Chile, the Extremely Large Telescope is under construction, with first light planned for 2024. With 256 times the light gathering area of the Hubble instrument, the ELT is clearly going to be a factor in not just exoplanet work but our studies of numerous other astronomical phenomena, from the earliest galaxies in the cosmos to the question of dark energy. Today we learn that the first six hexagonal segments for the ELT's main mirror have been cast by the German company SCHOTT at their facility in Mainz, Germany. We're just at the beginning of the process here, for the primary mirror is to be, at 39 meters, the largest ever made for an optical-infrared telescope. 798 individual segments -- each 1.4 meters across and 5 centimeters thick -- will go into it, working together as a single...