I want to mention the recent confirmation of K2-415b because this world falls into an interesting category: Planets with major implications for studying their atmospheres. Orbiting an M5V M-dwarf every 4.018 days at a distance of 0.027 AU, this is not a planet with any likelihood for life. Far from it, given an equilibrium temperature expected to be in the range of 400 K (the equivalent figure for Earth is 255 K). And although it’s roughly Earth-sized, K2-415b turns out to be at least three times more massive. What this planet has going for it, though, is that it transits a low mass star, and at 70 light years, it’s close. Consider: If we want to take advantage of transmission spectroscopy to study light being filtered through the planetary atmosphere during ingress and egress from the transit, nearby M-dwarf systems make ideal targets. Their habitable zones are close in, so we get frequent transits around small stars. But the number of Earth-sized transiting worlds around nearby...
The Value of LHS 475b
LHS 475b, a planet whose diameter is all but identical to Earth's, makes news not so much because of what it is but because of what it tells us about studying the atmospheres of small rocky worlds. Credit for the confirmation of this planet goes to the NIRSpec (Near-Infrared Spectrograph) instrument aboard the James Webb Space Telescope, and LHS 475b marks the telescope’s first exoplanet catch. Data from the Transiting Exoplanet Survey Satellite (TESS) were sufficient to point scientists toward this system for a closer look. JWST confirmed the planet after only two transits. Based on this detection, the Webb telescope is going to live up to expectations about its capabilities in exoplanet work. NIRSpec is a European Space Agency contribution to the JWST mission, and a major one, as the instrument’s multi-object spectroscopy mode is able to obtain spectra of up to 100 objects simultaneously, a capability that maximizes JWST observing time. No other spectrograph in space can do this,...
WASP-39b: JWST and Exoplanet Atmospheres
Although I often see the exoplanet WASP-39b referred to as a ‘hot Saturn,’ and sometimes a ‘hot Jupiter,’ the terms don’t really compute. This is a world closer to Saturn than Jupiter in mass, but with a radius somewhat larger than that of Jupiter. Hugging its G-class primary in a seven million kilometer orbit, it completes a circuit every four days. The system is about 700 light years from us in Virgo, and to my mind WASP-39b is a salutary reminder that we can carry analogies to the Solar System only so far. Because we have nothing in our system that remotely compares to WASP-39b. Let’s celebrate the fact that in this exoplanet we have the opportunity to study a different kind of planet, and remind ourselves of how many worlds we’re finding that are not represented by our own familiar categories. I imagine one day we'll have more descriptive names for what we now call, by analogy, 'super-Earths' and 'sub-Neptunes' as well. I've seen WASP-39b referred to in the literature as a...
KOBE: The Hunt for Habitable Zone K-dwarf Planets
From the standpoint of producing interesting life, K-dwarf stars look intriguing. Our G-class Sun is warm and cozy, but its lifetime is only about 10 billion years, while K-dwarfs (we can also call them orange dwarfs) can last up to 45 billion years. That's plenty of time for evolution to work its magic, and while G-stars make up only about 6 or 7 percent of the stars in the galaxy, K-dwarfs account for three times that amount. We have about a thousand K-dwarfs within 100 light years of the Solar System. When Edward Guinan (Villanova University) and colleague Scott Engle studied K-dwarfs in a project called "GoldiloKs," they measured the age, rotation rate, and X-ray and far-ultraviolet radiation in a sampling of mostly cool G and K stars (see Orange Dwarfs: 'Goldilocks' Stars for Life?). Their work took in a number of K-stars hosting planets, including the intriguing Kepler-442, which has a rocky planet in the habitable zone. Kepler-442b is where we'd like it to be in terms of...
Simultaneous Growth of Planet & Star?
I’m interested in a new paper on planet formation, not only for its conclusions but its methodology. What Amy Bonsor (University of Cambridge) and colleagues are drawing from their data is how quickly planets can form. We’ve looked numerous times in these pages at core accretion models that explain the emergence of rocky worlds and gravitational instability models that may offer a way of producing a gas giant. But how long after the formation of the circumstellar disk do these classes of planets actually appear? A planet like the Earth poses fewer challenges than a Jupiter or Saturn. Small particles run into each other within the gas and dust disk surrounding the young star, assembling planets and other debris through a process of clumping that eventually forms planetesimals that themselves interact and collide. Thus core accretion: The planet ‘grows’ in ways that are readily modeled and can be observed in disks around other stars. But the gas giants still pose problems. Core...
Super Earths/Hycean Worlds
Dave Moore is a Centauri Dreams regular who has long pursued an interest in the observation and exploration of deep space. He was born and raised in New Zealand, spent time in Australia, and now runs a small business in Klamath Falls, Oregon. He counts Arthur C. Clarke as a childhood hero, and science fiction as an impetus for his acquiring a degree in biology and chemistry. Dave has kept up an active interest in SETI (see If Loud Aliens Explain Human Earliness, Quiet Aliens Are Also Rare) as well as the exoplanet hunt, and today examines an unusual class of planets that is just now emerging as an active field of study. by Dave Moore Let me draw your attention to a paper with interesting implications for exoplanet habitability. The paper is “Potential long-term habitable conditions on planets with primordial H–He atmospheres,” by Marit Mol Lous, Ravit Helled and Christoph Mordasini. Published in Nature Astronomy, this paper is a follow-on to Madhusudhan et al’s paper on Hycean...
Biosignatures: The Case for Nitrous Oxide
Are we overlooking a potential biosignature? A new study makes the case that nitrous oxide could be a valuable indicator of life on other worlds, and one that can be detected with current and future instrumentation. In today’s essay, Don Wilkins takes a close look at the paper. A retired aerospace engineer with thirty-five years experience in designing, developing, testing, manufacturing and deploying avionics, Don tells me he has been an avid supporter of space flight and exploration all the way back to the days of Project Mercury. Based in St. Louis, where he is an adjunct instructor of electronics at Washington University, Don holds twelve patents and is involved with the university’s efforts at increasing participation in science, technology, engineering, and math. by Don Wilkins Biosignatures, specific signals produced by life, are the focus of intense study within the astronomical community. Gases such as nitrogen (N2), oxygen and methane are sought in planetary atmospheres as...
M-Dwarfs: The Asteroid Problem
I hadn’t intended to return to habitability around red dwarf stars quite this soon, but on Saturday I read a new paper from Anna Childs (Northwestern University) and Mario Livio (STScI), the gist of which is that a potential challenge to life on such worlds is the lack of stable asteroid belts. This would affect the ability to deliver asteroids to a planetary surface in the late stages of planet formation. I’m interested in this because it points to different planetary system architectures around M-dwarfs than we’re likely to find around other classes of star. What do observations show so far? You’ll recall that last week we looked at M-dwarf planet habitability in the context of water delivery, again involving the question of early impacts. In that paper, Tadahiro Kimura and Masahiro Ikoma found a separate mechanism to produce the needed water enrichment, while Childs and Livio, working with Rebecca Martin (UNLV) ponder a different question. Their concern is that red dwarf planets...
M-Dwarf Habitable Planets: The Water Factor
Small M-dwarf stars, the most common type of star in the galaxy, are likely to be the primary target for our early investigations of habitable planets. The small size of these stars and the significant transit depth this allows when an Earth-mass planet crosses their surface as seen from Earth mean that atmospheric analysis by ground- and space-based telescopes should be feasible via transmission spectroscopy. Recent studies have shown that the James Webb Space Telescope has the precision to at least partially characterize the atmospheres of Earth-class planets around some M-dwarfs. Soon-to-be commissioned ground-based extremely large telescopes will likewise play a role as we examine nearby transiting systems. But M-dwarfs make challenging homes for life, if indeed it can exist there. In addition to flare activity, we also have to reckon with the presence of water. Too much of it could suppress weathering in the geochemical carbon cycle, but too little does not allow for the...
Colors of a Habitable Exoplanet
When it comes to planetary habitability, it is all too easy to let our assumptions slide past without review. It's a danger to be avoided if we want to understand what may distinguish various types of habitable worlds. That's the implication of a presentation at the recent Europlanet Science Congress (EPSC), which finished its work on September 23 at the Palacio de Congresos de Granada (Spain). Tilman Spohn (International Space Science Institute) and Dennis Höning (Potsdam Institute for Climate Impact Research) have been investigating the ratio of land to ocean and the evolution of biospheres. The assumptions the duo are examining revolve around the kind of habitable world our Earth represents. Our planet draws on solar energy through continents balanced against large oceans that produce abundant rainfall. Would a given exoplanet have similar geological properties? According to the scientists, it is a balance between the emergence of continents and the volcanism and continental...
Ross 508 b: What We Can Learn from a Red Dwarf Super-Earth
The discovery of a super-Earth around the M-dwarf Ross 508 gives us an interesting new world close to, if not sometimes within, the inner edge of the star’s habitable zone. This is noteworthy not simply because of the inherent interest of the planet, but because the method used to detect it was Doppler spectroscopy. In other words, radial velocity methods in which we study shifts in the spectrum of the star are here being applied to a late M-dwarf that emits most of its energies in the near-infrared (NIR). I usually think about transits in relation to M-dwarf planets, because our space-based observatories, from CoRoT to Kepler and now TESS, have demonstrated the power of these techniques in finding exoplanets. M-dwarfs are made to order for transits because they’re small enough to offer deep transits – the signature of the planet in the star’s lightcurve is more pronounced than a transit across a larger star. From a radial velocity perspective, planets in an M-dwarf habitable zone...
Getting Down to Business with JWST
So let’s get to work with the James Webb Space Telescope. Those dazzling first images received a gratifying degree of media attention, and even my most space-agnostic neighbors were asking me about what exactly they were looking at. For those of us who track exoplanet research, it’s gratifying to see how quickly JWST has begun to yield results on planets around other stars. Thus WASP-96 b, 1150 light years out in the southern constellation Phoenix, a lightweight puffball planet scorched by its star. Maybe 'lightweight' isn’t the best word. Jupiter is roughly 320 Earth masses, and WASP-96b weighs in at less than half that, but its tight orbit (0.04 AU, or almost ten times closer to its Sun-like star than Mercury) has puffed its diameter up to 1.2 times that of Jupiter. This is a 3.5-day orbit producing temperatures above 800 ?. As you would imagine, this transiting world is made to order for analysis of its atmosphere. To follow JWST's future work, we’ll need to start learning new...
Of Algorithms and Hidden Planets
It’s hard to imagine what the field of exoplanet discovery will look like in a hundred years. Just as difficult as it is to imagine what might happen if we do get to a ‘singularity’ in machine intelligence beyond which we humans can’t venture. Will the study of other stellar systems become largely a matter of computers analyzing data acquired by AI, with human operators standing by only in case of equipment failure? Or will the human eye for pattern and detail so evident in many current citizen science projects always be needed to help us piece together what the machines find? I wonder this when I read about the effort going into teasing new data out of older observations, as we saw recently in VASCO, a project to study old astronomical photographic plates looking for possible technosignatures. And I suspect we’ll always need human/machine collaboration to draw maximum knowledge out of our data. Today let’s look at how useful software tools are illuminating what we’ve already learned...
White Dwarfs: Planetary System Rebirth?
Let's catch up with white dwarfs, a kind of star that may spawn planetary systems of its own. For I've just found another case of archival data being put to good use in the form of a study of a white dwarf system called G238-44. Here, the data come from the Hubble instrument (specifically, its Cosmic Origins Spectrograph and Space Telescope Imaging Spectrograph), the Far Ultraviolet Spectroscopic Explorer (FUSE), and the Keck Observatory's High Resolution Echelle Spectrometer (HIRES) in Hawaii. What astronomers presented at a recent AAS conference is a picture of a system severely disrupted by its star's transition to white dwarf status. Moreover, this is a star in the process of accretion with a distinct twist from earlier such discoveries. For the white dwarf - the remnant left behind after the system's star went through its red giant phase - is actively drawing rocky and metallic material as well as ices from the debris of the disrupted system. These are the stuff of planet...
Microlensing: Expect Thousands of Exoplanet Detections
We just looked at how gravitational microlensing can be used to analyze the mass of a star, giving us a method beyond the mass-luminosity relationship to make the call. And we're going to be hearing a lot more about microlensing, especially in exoplanet research, as we move into the era of the Nancy Grace Roman Space Telescope (formerly WFIRST), which is scheduled to launch in 2027. A major goal for the instrument is the expected discovery of exoplanets by the thousands using microlensing. That's quite a jump - I believe the current number is less than 100. For while radial velocity and transit methods have served us well in establishing a catalog of exoplanets that now tops 5000, gravitational microlensing has advantages over both. When a stellar system occludes a background star, the lensing of the latter's light can tell us much about the planets that orbit the foreground object. Whereas radial velocity and transits work best when a planet is in an orbit close to its star,...
Proxima Centauri: Microlensing Yields New Data
It’s not easy teasing out information about a tiny red dwarf star, even when it’s the closest star to the Sun. Robert Thorburn Ayton Innes (1861-1933), a Scottish astronomer, found Proxima using a blink comparator in 1915, noting a proper motion similar to Alpha Centauri (4.87” per year), with Proxima about two degrees away from the binary. Finding out whether the new star was actually closer than Centauri A and B involved a competition with a man with a similarly august name, Joan George Erardus Gijsbertus Voûte, a Dutch astronomer working in South Africa. Voûte’s parallax figures were more accurate, but Innes didn’t wait for debate, and proclaimed the star’s proximity, naming it Proxima Centaurus. The back and forth over parallax and the subsequent careers of both Innes and Voûte make for interesting reading. I wrote both astronomers up back in 2013 in Finding Proxima Centauri, but I’ll send you to my source for that article, Ian Glass (South African Astronomical Observatory), who...
A Habitable Exomoon Target List
Are there limits on how big a moon can be to orbit a given planet? All we have to work with, in the absence of confirmed exomoons, are the satellites of our Solar System’s planets, and here we see what appears to be a correlation between a planet’s mass and the mass of its moons. At least up to a point – we’ll get to that point in a moment. But consider: As Vera Dobos (University of Groningen, Netherlands) and colleagues point out in a recent paper for Monthly Notices of the Royal Astronomical Society, if we’re talking about moons forming in the circumplanetary disk around the young Sun, the total mass is on the order of 10-4Mp. Here Mp is the mass of the planet. A planet with 10 times Jupiter’s mass, given this figure, could have a moon as large as a third of Earth’s mass, and so far observational evidence supports the idea that moons can form regularly in such disks. There is no reason to believe we won’t find exomoons by the billions throughout the galaxy. Image: The University of...
Habitability: Look to Younger Worlds
A liquid water-defined habitable zone is a way of establishing parameters for life as we know it around other stars, and with this in mind, scientists study the amount of stellar radiation a planet receives as one factor in making the assessment. But of course, not everything in a habitable zone is necessarily habitable, as our decidedly uninhabitable Moon makes all too clear. Atmospheric factors and tectonic activity, for example, have to be weighed as we try to learn what the actual temperature at the surface would be. We're learning as we go about other contributing factors. A problem of lesser visibility in the literature, though perhaps just as crucial, is whether a given planet can stay habitable on timescales of billions of years. This is where an interesting new paper from Cayman Unterborn (Southwest Research Institute) and colleagues enters the mix. A key question in the view of these researchers is whether carbon dioxide, the greenhouse gas whose ebb and flow on our world...
AB Aurigae b: The Case for Disk Instability
What to make of a Jupiter-class planet that orbits its host star at a distance of 13.8 billion kilometers? This is well over twice the distance of Pluto from the Sun, out past the boundaries of what in our system is known as the Kuiper Belt. Moreover, this is a young world still in the process of formation. At nine Jupiter masses, it's hard to explain through conventional modeling, which sees gas giants growing through core accretion, steadily adding mass through progressive accumulation of circumstellar materials. Core accretion makes sense and seems to explain typical planet formation, with the primordial cloud around an infant star dense in dust grains that can accumulate into larger and larger objects, eventually growing into planetesimals and emerging as worlds. But the new planet - AB Aurigae b - shouldn't be there if core accretion were the only way to produce a planet. At these distances from the star, core accretion would take far longer than the age of the system to produce...
Microlensing: K2’s Intriguing Find
Exoplanet science can look forward to a rash of discoveries involving gravitational microlensing. Consider: In 2023, the European Space Agency will launch Euclid, which although not designed as an exoplanet mission per se, will carry a wide-field infrared array capable of high resolution. ESA is considering an exoplanet microlensing survey for Euclid, which will be able to study the galactic bulge for up to 30 days twice per year, perhaps timed for the end of the craft’s cosmology program. Look toward crowded galactic center long enough and you just may see a star in the galaxy's disk move in front of a background star located much further away in that dense bulge. The result: The lensing phenomenon predicted by Einstein, with the light of the background star magnified by the intervening star. If that star has a planet, it's one we can detect even if it's relatively small, and even if it's widely spaced from its star. For its part, NASA plans to launch the Roman space telescope by...