Planetary Birth around Dying Stars

Half a century ago, we were wondering if other stars had planets, and although we assumed so, there was always the possibility that planets were rare. Now we know that they’re all over the place. In fact, recent research out of Katholieke Universiteit Leuven in Belgium suggests that under certain circumstances, planets can form around stars that are going through their death throes, beginning the transition from red giant to white dwarf. The new work homes in on certain binary stars, and therein hangs a tale. After a red giant star has gone through the stage of helium burning at its core, it is referred to as an asymptotic giant branch star (AGB), on a path that takes it through a period of expansion and cooling prior to its becoming a white dwarf. These expanding stars lose mass as the result of stellar wind, up to 50 to 70 percent of the total mass of the star. The result: An extended envelope of material collecting around the object that will become a planetary nebula, a glowing...

read more

The Persistent Case for Exomoon Candidate Kepler-1708 b-i

We started finding a lot of 'hot Jupiters' in the early days of planet hunting simply because, although their existence was not widely predicted, they were the most likely planetary types to trigger our radial velocity detection methods. These star-hugging worlds produced a Doppler signal that readily showed the effects of planet on star, while smaller worlds, and planets farther out in their orbits, remained undetected. David Kipping (Columbia University) uses hot Jupiters as an analogy when describing his own indefatigable work hunting exomoons. We already have one of these - Kepler-1625 b-i - but it remains problematic and unconfirmed. If this turned out to be the first in a string of exomoons, we might well expect all the early finds to be large moons simply because using transit methods, these would be the easiest to detect. Kepler-1625 b-i is problematic because the data could be showing the effects of other planets in its system. If real, it would be a moon far larger than any...

read more

The ‘Disintegrating Planet’ Factor

Using machine learning to provide an algorithmic approach to the abundant data generated by the Transiting Exoplanet Survey Satellite (TESS) has proven unusually productive. I'm looking at an odd object called TIC 400799224, as described in a new paper in The Astronomical Journal from Brian Powell (NASA GSFC) and team, a source that displays a sudden drop in brightness - 25% in a matter of four hours - followed by a series of brightness variations. What's going on here? We're looking at something that will have to be added to a small catalog of orbiting objects that emit dust; seven of these are presented in the paper, including this latest one. The first to turn up was KIC 12557548, whose discovery paper in 2012 argued that the object was a disintegrating planet emitting a dust cloud, a model that was improved in subsequent analyses. K2-22b, discovered in 2015, showed similar features, with varying transit depths and shapes, although no signs of gas absorption.. In fact, the objects...

read more

Rogue Planet Discoveries Challenge Formation Models

As we begin the New Year, I want to be sure to catch up with the recent announcement of a discovery regarding 'rogue' planets, those interesting worlds that orbit no central star but wander through interstellar space alone (or, conceivably, with moons). Conceivably ejected from their host stars through gravitational interactions (more on this in a moment), such planets become interstellar targets in their own right, as given the numbers now being suggested, there may be rogue planets near the Solar System. Image: Rogue planets are elusive cosmic objects that have masses comparable to those of the planets in our Solar System but do not orbit a star, instead roaming freely on their own. Not many were known until now, but a team of astronomers, using data from several European Southern Observatory (ESO) telescopes and other facilities, have just discovered at least 70 new rogue planets in our galaxy. This is the largest group of rogue planets ever discovered, an important step towards...

read more

Is Surface Ice Uncommon on Habitable Worlds?

The day is not far off when we’ll be able to look at a small planet in the habitable zone of its star and detect basic features on its surface: water, ice, land. The era of the 30-meter extremely large telescope approaches, so this may even be possible from the ground, and large space telescopes will be up to the challenge as well (which is why things like aperture size and starshade prospects loom large in our discussions of current policy decisions). Consider this: On the Earth, while the atmosphere reflects a huge amount of light from the Sun, about half the total albedo at the poles comes from polar ice. It would be useful, then, to know more about the ice and land distribution that we might find on planets around other stars. This is the purpose of a new paper in the Planetary Science Journal recounting the creation of climate simulations designed to predict how surface ice will be distributed on Earth-like exoplanets. It’s a relatively simple model, the authors acknowledge, but...

read more

Deep Learning Methods Flag 301 New Planets

It's no small matter to add 301 newly validated planets to an exoplanet tally already totalling 4,569. But it's even more interesting to learn that the new planets are drawn out of previously collected data, as analyzed by a deep neural network. The 'classifier' in question is called ExoMiner, describing machine learning methods that learn by examining large amounts of data. With the help of the NASA supercomputer called Pleiades, ExoMiner seems to be a wizard at separating actual planetary signatures from the false positives that plague researchers. ExoMiner is described in a paper slated for The Astrophysical Journal, where the results of an experimental study are presented, using data from the Kepler and K2 missions. The data give the machine learning tools plenty to work with, considering that Kepler observed 112,046 stars in its 115-degree square search field, identifying over 4000 candidates. More than 2300 of these have been confirmed. The Kepler extended mission K2 detected...

read more

Proxima Centauri: Transits Amidst the Flares?

Discovered in 1915, Proxima Centauri has been a subject of considerable interest ever since, as you would expect of the star nearest to our own. But I had no idea research into planets around Proxima went all the way back to the 1930s. Nonetheless, a new paper from Emily Gilbert (University of Chicago) and colleagues mentions a 1938 attempt by Swedish astronomer Erik Holmberg to use astrometric methods to search for one or more Proxima planets. The abstract of the Holmberg paper (citation below) reads in part: Many parallax stars show periodic displacements. These effects probably are to be explained as perturbations caused by invisible companions. Since the amplitudes of the orbital motion are very small, the masses of the companions will generally be very small, too. Thus Proxima Centauri probably has a companion, the mass of which is only some few times larger than the mass of Jupiter. A preliminary investigation gives the result that 25% of the total number of parallax stars may...

read more

TOLIMAN Targets Centauri A/B Planets

We talked about the TOLIMAN mission last April, and the renewed interest in astrometry as the key to ferreting out possible planets around Alpha Centauri A and B. I was fortunate enough to hear Peter Tuthill (University of Sydney), who leads the team that has been developing the concept, rough out the idea at Breakthrough Discuss five years ago; Céline Bœhm (likewise at the University of Sydney) reported on more recent work at the virtual Breakthrough Discuss session this past spring. We now have an announcement from scientists involved that the space telescope mission will proceed. Eduardo Bendek (JPL) is a member of the TOLIMAN team: "Even for the very nearest bright stars in the night sky, finding planets is a huge technological challenge. Our TOLIMAN mission will launch a custom-designed space telescope that makes extremely fine measurements of the position of the star in the sky. If there is a planet orbiting the star, it will tug on the star betraying a tiny, but...

read more

TESS: An Unusual Circumbinary Discovery

Circumbinary planets are those that orbit two stars, a small but growing category of worlds -- we've detected some 14 thus far, thanks to Kepler's good work, and that of the Transiting Exoplanet Survey Satellite (TESS). The latest entry, TIC 172900988, illustrates the particular challenge such planets represent. Transit photometry is a standard method for finding planets, detecting the now familiar drop in starlight as the planet moves between us and the surface of the host star. Kepler found thousands of exoplanets this way. But when two stars are involved, things get complicated. Image: The newly discovered planet, TIC 172900988b, is roughly the radius of Jupiter, and several times more massive, but it orbits its two stars in less than one year. This world is hot and unlike anything in our Solar System. Credit: PSI/Pamela L. Gay. Three transits are required to determine the orbital path of a planet. For us to make a detection, a circumbinary planet will have to transit both stars,...

read more

SPARCS: Zeroing in on M-dwarf Flares

Although we’ve been talking this week about big telescopes, from extremely large designs like the Thirty Meter Telescope and the European Extremely Large Telescope to the space-based HabEx/LUVOIR descendant prioritized by Astro2020, small instruments continue to do interesting work around the edges. I just noticed a tiny one called the Star-Planet Activity Research CubeSat (SPARCS) that fills a gap in our study of M-dwarfs, those small stars whose flares are so problematic for habitability. Under development at Arizona State University, the space-based SPARCS is just halfway into its development phase, but let’s take a look at it in light of ongoing work on M-dwarf planets, because it bodes well for turning theories about flare activity into data that can firm up our understanding. The problem is that while theoretical studies delve into ultraviolet flaring on these stars, the longest intensive UV monitoring on an M-dwarf done thus far has been a thirty hour effort with the Hubble...

read more

White Dwarf Clues to Unusual Planetary Composition

The surge of interest in white dwarfs continues. We've known for some time that these remnants of stars like the Sun, having been through the red giant phase and finally collapsing into a core about the size of the Earth, can reveal a great deal about objects that have fallen into them. That would be rocky material from planetary objects that once orbited the star, just as the planets of our Solar System orbit the Sun in our halcyon, pre-red-giant era. The study of atmospheric pollution in white dwarfs rests on the fact that white dwarfs that have cooled below 25,000 K have atmospheres of pure hydrogen or helium. Heavier elements sink rapidly to the stellar core at these temperatures, so the only source of elements higher than helium -- metals in astronomy parlance -- is through accretion of orbiting materials that cross the Roche limit and fall into the atmosphere. These contaminants of stellar atmospheres are now the subject of a new investigation led by astronomer Siyi Xu (NSF...

read more

Planetary Composition: Enter the ‘Super-Mercuries’

The idea that the composition of a star and its rocky planets are connected is a natural one. Both classes of object accrete material within a surrounding gas and dust environment, and thus we would expect a link between the two. Testing the hypothesis, researchers from three institutions -- the Instituto de Astrofísica e Ciências do Espaço (Portugal), the NCCR PlanetS project at the University of Bern, and the University of Zürich -- have confirmed the concept while fine-tuning the details. After all, we still have to explain iron-rich Mercury as an outlier in our own Solar System. Image: Mercury has an average density of 5430 kilograms per cubic meter, which is second only to Earth among all the planets. It is estimated that the planet Mercury, like Earth, has a ferrous core with a size equivalent to two-thirds to three-fourths that of the planet's overall radius. The core is believed to be composed of an iron-nickel alloy covered by a mantle and surface crust. Credit: NASA....

read more

A Jupiter-class Planet Orbiting a White Dwarf

A gas giant similar to Jupiter, and with a somewhat similar orbit, revolves around a white dwarf located about 6500 light years out toward galactic center. As reported in a paper in Nature, this is an interesting finding because stars like the Sun eventually wind up as white dwarfs, so we have to wonder what kind of planets could survive a star’s red giant phase and continue to orbit the primary. If Earth one day is engulfed, will the gas giants survive? The new discovery implies that result, and marks the first confirmed planetary system that looks like what ours could become. Image: An artist’s rendition of a newly discovered Jupiter-like exoplanet orbiting a white dwarf. This system is evidence that planets can survive their host star’s explosive red giant phase, and is the first confirmed planetary system that serves as an analogue to the face of the Sun and Jupiter in our own Solar System. Credit: W. M. Keck Observatory/Adam Makarenko. Underlining just how faint white dwarfs are...

read more

The Survival of M-Dwarf Planet Atmospheres

I was interested in yesterday's story about the two super-Earths around nearby M-dwarfs -- TOI-1634b and TOI-1685b -- partly because of the research that follows. In both cases there is the question of atmospheres. The two TESS planets are so numbingly close to their host stars that they may have lost their original hydrogen/helium atmospheres in favor of an atmosphere sustained by emissions from within. Hearteningly, we should be able to find out more with the James Webb Space Telescope, on which ride the hopes of so many exoplanet researchers. Today's system is the intriguing L 98-59, only 35 light years from Earth and possessed of at least four planets, with a fifth as yet unconfirmed. Here we have two rocky inner worlds, a possible ocean planet (L 98-59 d) and another likely rocky world to the inside of the habitable zone boundary. Perhaps within the habitable zone, if it exists, is L 98-59f, so this is a system to keep an eye on, an obvious candidate as a JWST target. At UC...

read more

Atmospheric Evolution on Hot Super-Earths

Hot Jupiters (notice I’ve finally stopped putting the term into quotation marks) were the obvious early planets to detect, even if no one had any idea whether such things existed. I suppose you could say Greg Matloff knew, at least to the point that he helped Buzz Aldrin and John Barnes come up with a plot scenario involving a planet that fit the description in their novel Encounter with Tiber (Grand Central, 1996), which was getting published just as the hot Jupiter 51 Pegasi b was being discovered. Otto Struve evidently predicted the existence of gas giants close to their star as far back as 1952, but it’s certainly true that planets like this weren’t in the mainstream of astronomical thinking when 51 Pegasi b popped up. Selection effect works wonders, and it makes sense that radial velocity methods would bear first fruit with a large planet working its gravitational effects on the star it orbits closely. Today, using transits, gravitational microlensing, astrometry and even direct...

read more

Hit-and-Run: Earth, Venus and Planet-Shaping Impacts

The gradual accretion of material within a protoplanetary disk should, in conventional models, allow us to go all the way from dust grains to planetesimals to planets. But a new way of examining the latter parts of this process has emerged at the University of Arizona Lunar and Planetary Laboratory in Tucson. There, in a research effort led by Erik Asphaug, a revised model of planetary accretion has been developed that looks at collisions between large objects and distinguishes between ‘hit-and-run’ events and accretionary mergers. The issue is germane not just for planet formation, but also for the appearance of our Moon, which the researchers treat in a separate paper to extend the model for early Earth and Venus interactions that appears in the first. In the Earth/Venus analysis, an impact might be a glancing blow that, given the gravitational well produced by the Sun, could cause a surviving large part of an Earth-impactor (the authors call this a ‘runner’) to move inward and...

read more

Cloud Layers at WASP-127b

A 'hot Saturn' with a difference, that's WASP-127b. Although it's 525 light years away, we've learned a surprising amount about the planet's atmosphere. Details come via the ongoing Europlanet Science Congress 2021, now being held virtually for pandemic reasons, at which Romain Allart (iREx/Université de Montréal and Université de Genève) spoke this week. WASP-127b is quite an unusual planet with or without cloud cover. It's orbiting its star in a scant four days, amped up by stellar irradiation levels 600 times what the Earth receives from the Sun. That would, the researcher points out, produce temperatures in the range of 1100 degrees Celsius (over 1370 Kelvin). The result of all these factors is a world with a fifth the mass of Jupiter actually inflating into a radius 1.3 larger than Jupiter. The word in vogue among astrophysicists for a planet like this seems to be 'fluffy,' which pretty much describes it. Image: WASP-127b compared with planets of our Solar...

read more

Exoplanets Found to be Plentiful in the Galactic Bulge

I mentioned yesterday that we are just opening up the discovery space when it comes to exoplanets. It's an obvious observation for those who follow these things, but I suspect most casual observers don't realize that almost all the planetary systems we've found thus far are located relatively close to the Sun, almost always within no more than a few thousand light years. Most of the stars the Kepler mission observed in Cygnus, Lyra and Draco were about the same distance from galactic center as the Earth. The average distance to the target stars of this most productive of all exoplanet missions yet was 600 to 3,000 light years. Kepler, like TESS, worked by studying the transits of planets across their host stars, and in Kepler's case, the method was unable to detect transits at distances any larger than these. In fact, we have only one method that can detect exoplanets at a wide range of distances in the Milky Way, and that is gravitational microlensing, which can take us into the...

read more

Into the Brown Dwarf Desert

It's a measure of how common exoplanet detection has become that I can't even remember the identity of the object I'm about to describe. Back in the early days (which means not long after the first main sequence detection, the planet at 51 Pegasi), I was at a small dinner gathering talking informally about how you find these objects. A gas giant was in the news, another new world, or was it really a brown dwarf? And just what was a brown dwarf in the first place? Back then, with just a handful of known exoplanets, introducing the idea of a brown dwarf raised a lot of questions. Now, of course, we have planets in the thousands and are just opening up the discovery space. Brown dwarfs are plentiful, with some estimates at one brown dwarf for every six main sequence stars. A 2017 analysis of a cluster called RCW 38 by Koraljka Muzic and team concluded that the galaxy contains between 25 and 100 billion brown dwarfs. So we have plenty to work with as we home in on the still controversial...

read more

‘Hycean’ Worlds: A New Candidate for Biosignatures?

We’ve just seen the coinage of a new word that denotes an entirely novel category of planets. Out of research at the University of Cambridge comes a paper on a subset of habitable worlds the scientists have dubbed ‘Hycean’ planets. These are hot, ocean-covered planets with habitable surface conditions under atmospheres rich in hydrogen. The authors believe they are more common than Earth-class worlds (although much depends upon their composition), and should offer considerable advantages when it comes to the detection of biosignatures. Hycean worlds give us another habitable zone, this one taking in a larger region than the liquid water habitable zone we’ve always considered as the home to Earth. In every respect they challenge our categories. Not so long ago a Cambridge team led by Nikku Madhusudhan found that K2-18b, 2.6 times Earth’s radius and 8.6 times its mass, could maintain liquid water at habitable temperatures beneath its hydrogen atmosphere. The team has now generalized...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives