Circumbinary planets are those that orbit two stars, a small but growing category of worlds -- we've detected some 14 thus far, thanks to Kepler's good work, and that of the Transiting Exoplanet Survey Satellite (TESS). The latest entry, TIC 172900988, illustrates the particular challenge such planets represent. Transit photometry is a standard method for finding planets, detecting the now familiar drop in starlight as the planet moves between us and the surface of the host star. Kepler found thousands of exoplanets this way. But when two stars are involved, things get complicated. Image: The newly discovered planet, TIC 172900988b, is roughly the radius of Jupiter, and several times more massive, but it orbits its two stars in less than one year. This world is hot and unlike anything in our Solar System. Credit: PSI/Pamela L. Gay. Three transits are required to determine the orbital path of a planet. For us to make a detection, a circumbinary planet will have to transit both stars,...
SPARCS: Zeroing in on M-dwarf Flares
Although we’ve been talking this week about big telescopes, from extremely large designs like the Thirty Meter Telescope and the European Extremely Large Telescope to the space-based HabEx/LUVOIR descendant prioritized by Astro2020, small instruments continue to do interesting work around the edges. I just noticed a tiny one called the Star-Planet Activity Research CubeSat (SPARCS) that fills a gap in our study of M-dwarfs, those small stars whose flares are so problematic for habitability. Under development at Arizona State University, the space-based SPARCS is just halfway into its development phase, but let’s take a look at it in light of ongoing work on M-dwarf planets, because it bodes well for turning theories about flare activity into data that can firm up our understanding. The problem is that while theoretical studies delve into ultraviolet flaring on these stars, the longest intensive UV monitoring on an M-dwarf done thus far has been a thirty hour effort with the Hubble...
White Dwarf Clues to Unusual Planetary Composition
The surge of interest in white dwarfs continues. We've known for some time that these remnants of stars like the Sun, having been through the red giant phase and finally collapsing into a core about the size of the Earth, can reveal a great deal about objects that have fallen into them. That would be rocky material from planetary objects that once orbited the star, just as the planets of our Solar System orbit the Sun in our halcyon, pre-red-giant era. The study of atmospheric pollution in white dwarfs rests on the fact that white dwarfs that have cooled below 25,000 K have atmospheres of pure hydrogen or helium. Heavier elements sink rapidly to the stellar core at these temperatures, so the only source of elements higher than helium -- metals in astronomy parlance -- is through accretion of orbiting materials that cross the Roche limit and fall into the atmosphere. These contaminants of stellar atmospheres are now the subject of a new investigation led by astronomer Siyi Xu (NSF...
Planetary Composition: Enter the ‘Super-Mercuries’
The idea that the composition of a star and its rocky planets are connected is a natural one. Both classes of object accrete material within a surrounding gas and dust environment, and thus we would expect a link between the two. Testing the hypothesis, researchers from three institutions -- the Instituto de Astrofísica e Ciências do Espaço (Portugal), the NCCR PlanetS project at the University of Bern, and the University of Zürich -- have confirmed the concept while fine-tuning the details. After all, we still have to explain iron-rich Mercury as an outlier in our own Solar System. Image: Mercury has an average density of 5430 kilograms per cubic meter, which is second only to Earth among all the planets. It is estimated that the planet Mercury, like Earth, has a ferrous core with a size equivalent to two-thirds to three-fourths that of the planet's overall radius. The core is believed to be composed of an iron-nickel alloy covered by a mantle and surface crust. Credit: NASA....
A Jupiter-class Planet Orbiting a White Dwarf
A gas giant similar to Jupiter, and with a somewhat similar orbit, revolves around a white dwarf located about 6500 light years out toward galactic center. As reported in a paper in Nature, this is an interesting finding because stars like the Sun eventually wind up as white dwarfs, so we have to wonder what kind of planets could survive a star’s red giant phase and continue to orbit the primary. If Earth one day is engulfed, will the gas giants survive? The new discovery implies that result, and marks the first confirmed planetary system that looks like what ours could become. Image: An artist’s rendition of a newly discovered Jupiter-like exoplanet orbiting a white dwarf. This system is evidence that planets can survive their host star’s explosive red giant phase, and is the first confirmed planetary system that serves as an analogue to the face of the Sun and Jupiter in our own Solar System. Credit: W. M. Keck Observatory/Adam Makarenko. Underlining just how faint white dwarfs are...
The Survival of M-Dwarf Planet Atmospheres
I was interested in yesterday's story about the two super-Earths around nearby M-dwarfs -- TOI-1634b and TOI-1685b -- partly because of the research that follows. In both cases there is the question of atmospheres. The two TESS planets are so numbingly close to their host stars that they may have lost their original hydrogen/helium atmospheres in favor of an atmosphere sustained by emissions from within. Hearteningly, we should be able to find out more with the James Webb Space Telescope, on which ride the hopes of so many exoplanet researchers. Today's system is the intriguing L 98-59, only 35 light years from Earth and possessed of at least four planets, with a fifth as yet unconfirmed. Here we have two rocky inner worlds, a possible ocean planet (L 98-59 d) and another likely rocky world to the inside of the habitable zone boundary. Perhaps within the habitable zone, if it exists, is L 98-59f, so this is a system to keep an eye on, an obvious candidate as a JWST target. At UC...
Atmospheric Evolution on Hot Super-Earths
Hot Jupiters (notice I’ve finally stopped putting the term into quotation marks) were the obvious early planets to detect, even if no one had any idea whether such things existed. I suppose you could say Greg Matloff knew, at least to the point that he helped Buzz Aldrin and John Barnes come up with a plot scenario involving a planet that fit the description in their novel Encounter with Tiber (Grand Central, 1996), which was getting published just as the hot Jupiter 51 Pegasi b was being discovered. Otto Struve evidently predicted the existence of gas giants close to their star as far back as 1952, but it’s certainly true that planets like this weren’t in the mainstream of astronomical thinking when 51 Pegasi b popped up. Selection effect works wonders, and it makes sense that radial velocity methods would bear first fruit with a large planet working its gravitational effects on the star it orbits closely. Today, using transits, gravitational microlensing, astrometry and even direct...
Hit-and-Run: Earth, Venus and Planet-Shaping Impacts
The gradual accretion of material within a protoplanetary disk should, in conventional models, allow us to go all the way from dust grains to planetesimals to planets. But a new way of examining the latter parts of this process has emerged at the University of Arizona Lunar and Planetary Laboratory in Tucson. There, in a research effort led by Erik Asphaug, a revised model of planetary accretion has been developed that looks at collisions between large objects and distinguishes between ‘hit-and-run’ events and accretionary mergers. The issue is germane not just for planet formation, but also for the appearance of our Moon, which the researchers treat in a separate paper to extend the model for early Earth and Venus interactions that appears in the first. In the Earth/Venus analysis, an impact might be a glancing blow that, given the gravitational well produced by the Sun, could cause a surviving large part of an Earth-impactor (the authors call this a ‘runner’) to move inward and...
Cloud Layers at WASP-127b
A 'hot Saturn' with a difference, that's WASP-127b. Although it's 525 light years away, we've learned a surprising amount about the planet's atmosphere. Details come via the ongoing Europlanet Science Congress 2021, now being held virtually for pandemic reasons, at which Romain Allart (iREx/Université de Montréal and Université de Genève) spoke this week. WASP-127b is quite an unusual planet with or without cloud cover. It's orbiting its star in a scant four days, amped up by stellar irradiation levels 600 times what the Earth receives from the Sun. That would, the researcher points out, produce temperatures in the range of 1100 degrees Celsius (over 1370 Kelvin). The result of all these factors is a world with a fifth the mass of Jupiter actually inflating into a radius 1.3 larger than Jupiter. The word in vogue among astrophysicists for a planet like this seems to be 'fluffy,' which pretty much describes it. Image: WASP-127b compared with planets of our Solar...
Exoplanets Found to be Plentiful in the Galactic Bulge
I mentioned yesterday that we are just opening up the discovery space when it comes to exoplanets. It's an obvious observation for those who follow these things, but I suspect most casual observers don't realize that almost all the planetary systems we've found thus far are located relatively close to the Sun, almost always within no more than a few thousand light years. Most of the stars the Kepler mission observed in Cygnus, Lyra and Draco were about the same distance from galactic center as the Earth. The average distance to the target stars of this most productive of all exoplanet missions yet was 600 to 3,000 light years. Kepler, like TESS, worked by studying the transits of planets across their host stars, and in Kepler's case, the method was unable to detect transits at distances any larger than these. In fact, we have only one method that can detect exoplanets at a wide range of distances in the Milky Way, and that is gravitational microlensing, which can take us into the...
Into the Brown Dwarf Desert
It's a measure of how common exoplanet detection has become that I can't even remember the identity of the object I'm about to describe. Back in the early days (which means not long after the first main sequence detection, the planet at 51 Pegasi), I was at a small dinner gathering talking informally about how you find these objects. A gas giant was in the news, another new world, or was it really a brown dwarf? And just what was a brown dwarf in the first place? Back then, with just a handful of known exoplanets, introducing the idea of a brown dwarf raised a lot of questions. Now, of course, we have planets in the thousands and are just opening up the discovery space. Brown dwarfs are plentiful, with some estimates at one brown dwarf for every six main sequence stars. A 2017 analysis of a cluster called RCW 38 by Koraljka Muzic and team concluded that the galaxy contains between 25 and 100 billion brown dwarfs. So we have plenty to work with as we home in on the still controversial...
‘Hycean’ Worlds: A New Candidate for Biosignatures?
We’ve just seen the coinage of a new word that denotes an entirely novel category of planets. Out of research at the University of Cambridge comes a paper on a subset of habitable worlds the scientists have dubbed ‘Hycean’ planets. These are hot, ocean-covered planets with habitable surface conditions under atmospheres rich in hydrogen. The authors believe they are more common than Earth-class worlds (although much depends upon their composition), and should offer considerable advantages when it comes to the detection of biosignatures. Hycean worlds give us another habitable zone, this one taking in a larger region than the liquid water habitable zone we’ve always considered as the home to Earth. In every respect they challenge our categories. Not so long ago a Cambridge team led by Nikku Madhusudhan found that K2-18b, 2.6 times Earth’s radius and 8.6 times its mass, could maintain liquid water at habitable temperatures beneath its hydrogen atmosphere. The team has now generalized...
Enter the ‘Belatedly Habitable’ Zone
The most common objection I hear about what we call the ‘habitable zone’ is that it specifies conditions only for life as we know it. It leaves out, for example, conceivable biospheres under the ice of gas giant moons, examples of which we possibly have here in the Solar System. But there is another issue with defining habitability in terms of atmospheric pressures that can support liquid water on the surface. As Jason Wright and Noah Tuchow (both at Penn State) point out in a recent paper, the classic habitable zone concept does not take the evolution of both planet and star into account. It’s a solid point. A planet now residing in the habitable zone could have remained habitable since the earliest era of its formation. Or it could have become habitable at a later time. Thus Tuchow and Wright make a distinction between what they refer to as the Continuous Habitable Zone (CHZ) and a class of planets they refer to as ‘belatedly habitable.’ These worlds may benefit from changes in the...
Habitability: Similar Magnetic Activity Links Stellar Types
Looking at flare activity in young M-dwarf stars, as we did in the last post, brings out a notable difference between these fast-spinning stars and stars like the Sun. Across stellar classifications from M- to F-, G- and K-class stars, there is commonality in the fusion of hydrogen into helium in the stellar cores. But the Sun has a zone at which energy carried toward the surface as radiative photons is absorbed or scattered by dense matter. At this point, convection begins as colder matter moves downward and hot matter rises. This radiative zone giving way to convection is distinctive -- stars in the M-class range, a third of the mass of the Sun and lower, do not possess a radiative core, but undergo convection throughout their interior. Image: Interior structure of the Sun. Credit: kelvinsong / Wikimedia Commons CC BY-SA 3.0. If we're going to account for magnetic phenomena like starspots, flares and coronal mass ejections, we can come up with a model that fits stars with a...
Can M-Dwarf Planets Survive Stellar Flares?
We can learn a lot about stars by studying magnetic activity like starspots, flares and coronal mass ejections (CMEs). Starspots are particularly significant for scientists using radial velocity methods to detect planets, because they can sometimes mimic the signature of a planet in the data. But the astrobiology angle is also profound: Young M-dwarfs, known for flare activity, could be fatally compromised as hosts for life because strong flares can play havoc with planetary atmospheres. Given the ubiquity of M-dwarfs -- they’re the most common type of star in our galaxy -- we’d like to know whether or not they are candidates for supporting life. A paper from Ekaterina Ilin and team at the Leibniz Institute for Astrophysics in Potsdam digs into the question by looking at the orientation of magnetic activity on young M-dwarfs. The sample is small, though carefully chosen from the processing of over 3000 red dwarf signatures obtained by TESS, the Transiting Exoplanet Survey Satellite...
A Path to Planet Formation in Binary Systems
How planets grow in double-star systems has always held a particular fascination for me. The reason is probably obvious: In my younger days, when no exoplanets had been discovered, the question of what kind of planetary systems were possible around multiple stars was wide open. And there was Alpha Centauri in our southern skies, taunting us by its very presence. Could a life-laden planet be right next door? What Kedron Silsbee and Roman Rafikov have been working on extends well beyond Alpha Centauri, usefully enough, and helps us look into how binaries like Centauri A and B form planets. Says Rafikov (University of Cambridge), "A system like this would be the equivalent of a second Sun where Uranus is, which would have made our own solar system look very different." How true. In fact, imagining how different our system would work if we had a star among the outer planets raises wonderful questions. Could we have a habitable world around each star in such a binary? And if so, wouldn't...
The Case of PDS 70 and a Moon-forming Disk
The things we look for around other stars do not necessarily surprise us. I think most astronomers were thinking we'd find planets around a lot of stars when the Kepler mission began its work. The question was how many -- Kepler was to give us a statistical measurement on the planet population within its field of stars, and it succeeded brilliantly. These days it seems clear that we can find planets around most stars, in all kinds of sizes and orbits, as we continue to seek an Earth 2.0.. The continuing news about the star PDS 70, a young T Tauri star about 400 light years away in Centaurus, fits the same mold. Here we're talking not just about planets but their moons. No exomoons have been confirmed, but there seems no reason to assume we won't begin to find them -- surely the process of forming moons is as universal as that of planet formation. The interest is in the observation, how it is made, and what it implies about our ability to move forward in characterizing planetary...
Radial Velocity: NEID Spectrograph Goes to Work
The NEID spectrograph has passed the Operational Readiness Review necessary for final acceptance and regular operations. Developed by NASA and the National Science Foundation's NN-EXPLORE exoplanet science program, it has been put through a lengthy commissioning process in the five years since the radial velocity planet hunter design was selected. NEID is mounted on the WIYN 3.5m telescope at Kitt Peak National Observatory in Arizona, and we now have word that its scientific mission has begun. Image: Sunset over Kitt Peak National Observatory during NEID commissioning in January 2020. Credit: Paul Robertson. As a radial velocity instrument, NEID is all about the tugs one or more planets exert on the host star, as measured radially -- toward Earth, then away from it -- during the planets' orbits. The Doppler shift in the star's light contains the information. That these are exquisitely tiny measurements should be obvious. Jupiter induces a 13 meter per second wobble on our star, but...
Carbon Isotopes as Clues to a Young Planet’s Formation
300 light years from Earth in the constellation Musca, the gas giant TYC 8998-760-1 b, along with a companion planet, orbits an infant K-class star about 17 million years old. We're probably looking at a brown dwarf here rather than a gas giant like Jupiter, for TYC 8998-760-1 b is about 14 times Jupiter's mass, nudging into brown dwarf territory, and it appears to be roughly three times as large, unusual for brown dwarfs. The planet's separation from its host star is pegged at 160 AU. An inflated atmosphere due to processes still unknown? We don't know, but both this and the companion planet have been directly imaged. Now TYC 8998-760-1 b resurfaces through work with the European Southern Observatory's Very Large Telescope, as reported in the latest issue of Nature. Led by first author Yapeng Zhang (Leiden University, The Netherlands), the team of astronomers detected carbon isotopes in the object's atmosphere, showing higher than expected carbon-13 content. Here is the image, first...
Exoplanet Watch: Firming Up Transit Timing
Demonstrating once again the role amateurs can play in supporting ongoing observations, a new project linking NASA and the American Association of Variable Star Observers is being launched. Exoplanet Watch isn't about discovering new transiting planets (although the potential is there) as much as tightening up the information we already have about planets currently under investigation. The idea is to help professional observers know when to look, which allows them to maximize precious observing time on instruments that are always in high demand. Transit timing is the key, and the fact is that for many known exoplanets, knowing exactly when to look is problematic. Rob Zellem (JPL) is project lead for Exoplanet Watch: "If there's a 15-minute under-estimate of when a transit will occur, that's an extra 15 minutes I have to build into my observing scenario. Time on big telescopes, especially space telescopes, is very, very precious. If you're observing a lot of planets, [15 minutes]...