Voyager 2 Makes It Through

Voyager 2 has now gone interstellar, making it not only NASA's single longest-running mission but one of only two spacecraft that have crossed over from the heliosphere to true interstellar space, what scientists call the Local Interstellar Medium (LISM). On that note, it's interesting to put the Solar System in context. Depending on how you define the term, the Solar System takes in a great deal of interstellar space. Many astronomers put its outer edge at the outer Oort Cloud, perhaps 100,000 AU away, and both Voyagers have yet to reach the inner Oort. At an estimated 1,000 AU, the inner boundary of the Oort Cloud is where the vast cometary cloud around our star becomes apparent, housing in its entirety trillions of comets and extending about 40 percent of the way to the Alpha Centauri stars. The Voyagers will keep going, of course, and will reach the inner Oort in perhaps 300 years, though without working instrumentation. The steady diminishment of power from the crafts'...

read more

CubeSats Deliver at Mars

I never saw the 2008 film WALL·E, which was all the rage not long after its release. A computer animated science fiction movie, WALL·E won a slew of awards including a Golden Globe for best animated feature, a Nebula for best script, and an Academy Award, as well as making Time's list of best movies of the decade. Bringing it to mind this morning, though, is the recent success of the InSight mission at landing on Mars, and the support technologies that flew with it. Thus the image below, which in its own way is iconic. It's from a craft nicknamed WALL·E after the star of the film, a CubeSat no larger than a briefcase that flew all the way to Mars in a seven month journey that demonstrated what miniaturized technologies can do. WALL·E is formally known as MARCO-B, the partner to MARCO-A (nicknamed EVE, another star of the film). Both these craft proved successful at their mission, which was to offer Earthside engineers the opportunity to monitor the InSight landing in ways that hadn't...

read more

Parker Solar Probe: Already a Record Setter

Over the sound system in the grocery store yesterday, a local radio station was recapping events of the day as I shopped. The newsreader came to an item about the Parker Solar Probe, then misread the text and came out with "The probe skimmed just 15 miles from the Sun's surface." Yipes! I was in the vegetable section but you could hear him all over the store, so I glanced around to see how people had reacted. Nobody as much as raised an eyebrow, which either says people tune out background noise as they shop or they have little knowledge of our star. The correct number is 15 million miles (24,1 million kilometers), and it's still a hugely impressive feat, but I hope the station got the story right later on. I go easy on this kind of thing because it's easy enough to make a mistake when reading radio copy (I've done this myself). Anyway, there is always some listener who calls it in, which I should have but didn't. I was pushed for time that morning, making choices about squash and...

read more

The Farthest: Voyager in Space

As we continue to track the Voyagers into interstellar space, the spacecraft have become the subject of a new documentary. Associate editor Larry Klaes, a long-time Centauri Dreams essayist and commentator, here looks at The Farthest: Voyager in Space, a compelling film released last year. Larry's deep knowledge of the Voyager mission helps him spot the occasional omission (why no mention of serious problems on the way to Jupiter, or of the historic Voyager 1 photo of Earth and Moon early in the mission?), but he's taken with the interviews, the special effects and, more often than not, with the spirit of the production. That spirit sometimes downplays science but does give the Golden Record plenty of air-time, including much that was new to me, such as the origin of the "Send more Chuck Berry!" quip, John Lennon's role, NASA's ambivalence, and an odd and insulting choice of venue for a key news conference. Read on for what you'll see and what you won't in this film about our longest...

read more

Voyager 2’s Path to Interstellar Space

I want to talk about the Voyagers this morning and their continuing interstellar mission, but first, a quick correction. Yesterday in writing about New Horizons' flyby of MU69, I made an inexplicable gaffe, referring to the event as occurring on the 19th rather than the 1st of January (without my morning coffee, I had evidently fixated on the '19' of 2019). Several readers quickly spotted this in the article's penultimate paragraph and I fixed it, but unfortunately the email subscribers received the uncorrected version. So for the record, we can look forward to the New Horizons flyby of MU69 on January 1, 2019 at 0533 UTC. Sorry about the error. Let's turn now to the Voyagers, and the question of how long they will stay alive. I often see 2025 cited as a possible terminus, with each spacecraft capable of communication with Earth and the operation of at least one instrument until then. If we make it to 2025, then Voyager 1 would be 160 AU out, and Voyager 2 will have reached 135 AU or...

read more

DE-STAR and Breakthrough Starshot: A Short History

Last Monday's article on the Trillion Planet Survey led to an email conversation with Phil Lubin, its founder, in which the topic of Breakthrough Starshot invariably came up. When I've spoken to Dr. Lubin before, it's been at meetings related to Starshot or presentations on his DE-STAR concept. Standing for Directed Energy System for Targeting of Asteroids and exploRation, DE-STAR is a phased laser array that could drive a small payload to high velocities. We've often looked in these pages at the rich history of beamed propulsion, but how did the DE-STAR concept evolve in Lubin's work for NASA's Innovative Advanced Concepts office, and what was the path that led it to the Breakthrough Starshot team? The timeline below gives the answer, and it's timely because a number of readers have asked me about this connection. Dr. Lubin is a professor of physics at UC-Santa Barbara whose primary research beyond DE-STAR has involved the early universe in millimeter wavelength bands, and a...

read more

MarCO: Taking CubeSat Technologies Interplanetary

The image below intrigues me. It's the first image of the Earth and the Moon together taken from a CubeSat, one of a pair of such tiny spacecraft NASA has despatched to Mars as part of a mission called MarCO (Mars Cube One), which will work in conjunction with the InSight lander. Taken on May 9, the photo was part of the process of testing the CubeSat's high-gain antenna. But to me it's a reminder of how far miniaturized technologies continue to advance. Image: The first image captured by one of NASA's Mars Cube One (MarCO) CubeSats. The image, which shows both the CubeSat's unfolded high-gain antenna at right and the Earth and its moon in the center, was acquired by MarCO-B on May 9. Credit: NASA/JPL-Caltech. As of this morning, we are 66 days away from InSight's landing on Mars, at a distance of 65 million kilometers from Earth and 16 million kilometers to Mars. I don't usually focus on Mars and lunar missions because this site's specialty is deep space, which for our purposes...

read more

New Horizons: Checking in on Approach Operations

Here's another, wider look at New Horizons' view of Ultima Thule (MU69), its next target, which we first saw in late August, though the image was acquired at mid-month. I like this view because it gets across just what a tricky acquisition this was. Look at the background star-field! Consider that Ultima is still 100 times fainter than Pluto as seen from Earth, making it about a million times fainter than a naked eye object. LORRI, the spacecraft's Long Range Reconnaissance Imager, once again demonstrates its key role in the mission. Image: New Horizons spotted Ultima Thule for the first time on August 16, near the center of the red circle in this LORRI image of the dense Milky Way star field where Ultima lies. Credit: JHU/APL. Getting the image as early as it did was something of a coup for New Horizons, this being the first attempt, made just after the spacecraft transitioned from spin-stabilized mode (during cruise) to pre-flyby mode, which allows its cameras and other instruments...

read more

The Breakthrough Starshot Opportunity

When we think about what is usually called 'planetary protection,' we're talking about the probes we send to possibly life-bearing places like Mars or Europa. It would confound our investigations if we couldn't be sure we hadn't contaminated such a place with microorganisms from Earth, unwittingly carried aboard a lander that was not properly stripped of such passengers. Even our Cassini Saturn orbiter was guided into the planet as a way of ensuring that it would not, at some future date, crash into a place as biologically interesting as Enceladus. Yesterday, having looked at an essay by Ethan Siegel, I asked rhetorically whether we should think up some kind of exoplanetary protection policy as well. After all, we're fleshing out an actual mission design through Breakthrough Starshot, aiming to reach nearby stars in coming decades. Siegel (Lewis & Clark College) had expressed his concern that Breakthrough Starshot might inadvertently start an interstellar war. The idea is extreme,...

read more

Musings on the Parker Solar Probe

The first thing I did when I heard about the Parker Solar Probe's successful launch (0731 UTC Sunday) was to double-check the spacecraft's projected velocity when it makes its closest approach to the Sun. I always think in terms of high speed when contemplating operations close to our star, the legacy of the two Helios missions, which at present hold the record as fastest man-made objects. Placed in highly elliptical orbits after their launches in 1974 and 1976, the Helios spacecraft managed a sizzling 70 kilometers per second. The Helios missions were a joint venture between what was then West Germany's space agency and NASA, the craft themselves built by German aerospace firm Messerschmitt-Bölkow-Blohm. Helios 2 flew closer to the Sun by about 3 million kilometers, closing to 0.29 AU (43 million kilometers), which took it inside the orbit of Mercury. The Parker Solar Probe ups the ante considerably, with an eventual closest approach of just 6.1 million kilometers. The spacecraft at...

read more

New Horizons from Within

Chasing New Horizons, by Alan Stern and David Grinspoon. Picador (2018), 320 pp. Early on in Alan Stern and David Grinspoon's Chasing New Horizons, a basic tension within the space community reveals itself. It's one that would haunt the prospect of a mission to Pluto throughout its lengthy gestation, repeatedly slowing and sometimes stopping the mission in its tracks. The authors call it a 'basic disconnect' between how NASA makes decisions on exploration and how the public tends to see the result. 'To boldly go where no one has gone before' is an ideal, but it runs up against scientific reality: ...the committees that assess and rank robotic-mission priorities within NASA's limited available funding are not chartered with seeking the coolest missions to find uncharted places. Rather, they want to know exactly what science is going to be done, what specific high-priority scientific questions are going to be answered, and the gritty details of how each possible mission can advance the...

read more

Breakthrough Starshot Sail RFP

Breakthrough Starshot held an 'industry day' on Wednesday May 23rd devoted to its lightsail project to take nanocraft to another star, framing the release of a Request for Proposals during its early concepts and analysis phase. The RFP focuses on the sail itself, investigating sail materials and stability under thrust. Step A proposals are due June 22, step B proposals on July 10, with finalists to be notified and contracts awarded this summer. The intent of the RFP is laid out in documents and slides from the meeting that Breakthrough has now placed online. From the RFP itself: The scope of this RFP addresses the Technology Development phase - to explore LightSail concepts, materials, fabrication and measurement methods, with accompanying analysis and simulation that creates advances toward a viable path to a scalable and ultimately deployable LightSail. We've been talking about Breakthrough Starshot in these pages for a long time, as a search through the archives will reveal. The...

read more

TESS: The View into the Galactic Plane

I want to be sure to get the first image from TESS, the Transiting Exoplanet Survey Satellite, into Centauri Dreams, given the importance of the mission and the high hopes riding on it as the next step in exoplanet exploration. Now we move from the Kepler statistical survey methodology to a look at bright, nearby stars, and plenty of them. TESS will cover an area of sky far larger than the amount of sky we see in this image, which looks out along the plane of the galaxy from a perspective that matches southern skies on Earth. Image: This test image from one of the four cameras aboard the Transiting Exoplanet Survey Satellite (TESS) captures a swath of the southern sky along the plane of our galaxy. TESS is expected to cover more than 400 times the amount of sky shown in this image when using all four of its cameras during science operations. Credits: NASA/MIT/TESS. Showing some 200,000 stars, the image is centered on the southern constellation Centaurus, with a bit of the Coalsack...

read more

A Deeper Look at TESS

The launch of TESS aboard a SpaceX Falcon 9 looks to be on track for Wednesday after yesterday's delay, which the company attributed to the need for "additional GNC [guidance, navigation and control] analysis." So we wait just a bit more, knowing that the payoff justifies the caution. We should be identifying planets in the thousands, and around bright, nearby stars. Standing down today to conduct additional GNC analysis, and teams are now working towards a targeted launch of @NASA_TESS on Wednesday, April 18.— SpaceX (@SpaceX) April 16, 2018 Principal investigator George Ricker and team have been through the process of designing, building and launching a mission before. It was in 2000 that NASA launched the MIT-built High Energy Transient Explorer 2, or HETE-2, that studied gamma-ray bursts for seven years in Earth orbit. A key technology for HETE-2 was the CCD -- charge-coupled device -- which allowed the satellite's optical and X-ray cameras to record bursts in electronic...

read more

Go TESS

"I always get the shakes before a drop," wrote Robert Heinlein, the words being those of protagonist Johnny Rico in his novel Starship Troopers. I thought of them again this morning because while I don't tend to get the 'shakes,' I do tend to get nervous before a major launch, and that's what we have today. The image below comes from the TESS mission Twitter account @NASA_TESS (https://twitter.com/NASA_TESS) in a shot just posted as I write. Launch is scheduled for 1832 Eastern time (2332 UTC) and can be seen here. The launch vehicle is a SpaceX Falcon 9, lifting off from Cape Canaveral. Here's a bit of NASA's latest statement: TESS is NASA's next step in the search for planets outside of our solar system, known as exoplanets, including those that could support life. The mission is expected to catalog thousands of planet candidates and vastly increase the current number of known exoplanets. TESS will find the most promising exoplanets orbiting relatively nearby stars, giving future...

read more

Interplanetary Exploration: Application of the Solar Sail and Falcon Heavy

Gregory Matloff’s contributions to interstellar studies need scant introduction, given their significance to solar-and beamed sail development for decades, and their visibility through books like The Starflight Handbook (1989) and Deep Space Probes (2005). A quick check of the bibliography online will demonstrate just how active Greg continues to be in analyzing the human future in space, as well as his newfound interest in the nature of consciousness (Star Light, Star Bright, 2016). The paper that follows grows out of Greg’s presentation at the 2016 iteration of the Tennessee Valley Interstellar Workshop, where he discussed ways to advance deep space exploration using near term technologies like Falcon Heavy, in conjunction with the solar sail capabilities he has so long championed. Read on for an examination of human factors beyond lunar orbit and a description of a useful near-term mission that could reach an object much closer than Mars relying on both chemical and sail...

read more

Mission to an Interstellar Asteroid

On the matter of interstellar visitors, bear in mind that our friend ‘Oumuamua, the subject of yesterday’s post, was discovered at the University of Hawaii’s Institute for Astronomy, using the Pan-STARRS telescope. The Panoramic Survey Telescope and Rapid Response System is located at Haleakala Observatory on Maui, where it has proven adept at finding new asteroids, comets and variable stars. Consider ‘Oumuamua a bonus, and according to a new paper from Greg Laughlin and Darryl Seligman (Yale University), a type of object we’ll be seeing again. Pan-STARRS may find objects like this every few years, but we’ll get a bigger payoff in terms of interstellar wanderers with the Large Synoptic Survey Telescope (LSST), now under construction at Cerro Pachón (Chile). Laughlin and Seligman think that this instrument will up the discovery rate as high as several per year, allowing us to see ‘Oumuamua in context, and also, perhaps, setting up the possibility of an intercept mission with a kinetic...

read more

MU69: New Horizons and its Target

We're just a little more than a year away from New Horizons' encounter with Kuiper Belt Object MU69. The spacecraft has now made its last trajectory correction of the cruise phase of its journey, following the 2015 flyby of Pluto/Charon, an adjustment performed to optimize science at destination. Both the Hubble instrument and the European Space Agency's Gaia mission have supplied data that is now being used to tighten the parameters of the trajectory. Another course correction is possible in October of 2018 during the MU69 approach phase. Image: The New Horizons spacecraft is about 483 million kilometers from 2014 MU69, the Kuiper Belt object it will encounter on Jan. 1, 2019. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute. This update from JHU/APL tells us that closest approach is now scheduled for 0533 UTC, or 0033 EST on January 1, 2019, which should give many New Year's partygoers something extra to stay up for. The course...

read more

Voyager and Mission Longevity

Sometimes it's helpful to look back at the original intent of a space mission. Extending missions is all about continuing to do good science, and it's often a major benefit of missions as successful as Voyager. But consider the Voyager parameters when the two craft launched in 1977. The plan: Study Jupiter and Saturn, as well as their larger moons and Saturn's rings, with spacecraft that were built to last five years. That primary mission, of course, was completed and led on to Voyager 2's flybys of Uranus and Neptune, and Voyager 1's crossing into the interstellar medium, a 40-year mission still returning data. Voyager 2 will make a similar crossing within the next few years. I've said a lot about Voyager in this space and have even advocated a final thruster burn for each when the two craft reach the end of their energy supplies, in a purely symbolic trajectory change that would bring them closer to nearby stars than they otherwise would travel (see Voyager to a Star). This goes...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives