Musings on Impartiality

Marc Millis, Tau Zero’s founding architect, drawing on his experience with NASA’s Breakthrough Propulsion Physics project and the years of research since, offers us some ideas about impartiality and how scientists can hope to attain it. It’s human nature to want our particular theories to succeed, but when they collide with reality, the lessons learned can open up interesting alternatives, as Marc explains in relation to interstellar worldships and the possibilities of exotic propulsion.

by Marc G. Millis

The best researchers I know seem to be able to maintain their impartiality when reaching new conclusions. The more common behavior is that people get an idea stuck in their head and then try and prove themselves correct. I just learned that there is a term for this more common behavior: “Polemical.” Embedded in the word is the notion that controversial argument can turn aggressive, an inevitable result when people are defending what they consider their turf.

I mention this in the context of getting trustworthy results, and then acting on those reliable findings rather than just charging ahead based on unverified preconceived notions. If the overall intent is to make the best decisions for the future – then decisions rooted in reliable findings, rather than expectations, will be more in tune with reality. They will be better decisions.

The topic of interstellar flight affords opportunities for easier objectivity as well as the opposite – pitfalls where one can lose objectivity. Because interstellar flight is almost certainly farther in the future than the next Moon and Mars missions, it is easier to apply impartiality. The huge payoffs of interstellar flight (finding new human homesteads and new life) are far enough away that there is no need to sell a particular pet technology today or skew the results toward near-term promises.

That said, I surprised myself when my own assessments gave results different than my expectations. Case in point – estimating how far in the future the first interstellar missions are, based on energy (energy is the most fundamental currency of motion). Those findings and a refined sequel (to appear soon in the Journal of the British Interplanetary Society) indicate that the first interstellar missions might be 2-centuries away, albeit with huge uncertainty bands.[ref]Millis, Marc. (2010) First Interstellar Missions, Considering Energy and Incessant Obsolescence, JBIS Vol 63 (accepted, pending publication).[/ref] The first Centauri Dreams post on those findings met with ‘energetic’ reaction, where many seemed disappointed that the prospects seemed so far in the future. Before I ran the numbers, I suspected that it would be much sooner too. The first calculations were done around 1996, and those results made me rethink what ‘next-steps’ were really required.

Rather than proceed with my prior notion, I had to stop and rethink things. The data said something unexpected. I knew I had conceived the methods to be impartial and fed the assessments with unbiased data, so the findings would be similarly unbiased. They were what they were. So, should I redo the analysis until I got the answer I wanted, or accept the results for what they were and then re-adjust my expectations? I decided to expose those results to other reviews, to check for errors and such, and then to accept the findings as they were.

Before that point, I thought the next step would be to use more detailed energy assessments to help pick the best interstellar propulsion options, but with two centuries of time to plan ahead, and many options whose numbers were still debatable, I realized that we need to abandon the idea of trying to pick the ONE best interstellar solution. Instead we need to focus on getting reliable data on the wide span of ideas (no salesmanship) – and to investigate the most critical ‘next-steps’ on as many of them as possible.

And this long lead time provides the topic of interstellar flight with the opportunity for more objectivity – the opportunity to take our time to reach sound decisions – to provide more trustworthy progress.

Colony Ships and Spaceship Earth

The other result that I was not expecting was that colony ships might be easier to launch than small, fast probes – at least in terms of energy. My prior expectations were that colony ships would need to be so immense and complicated that they would take longer to develop than a fast probe to Alpha Centauri. The energy study showed otherwise. Kinetic energy is linear in mass, and goes as the square of speed. That means if the ship is twice as massive, it requires twice as much energy, but if it goes twice as fast, it requires FOUR times the energy. Colony ships do not need to go fast. They only need to drift, carrying a segment of humanity. Up to that point, I thought colony ships would be a sequel, not a prequel to small, ultra-fast probes. Sometimes you just have to run the numbers.

Then it occurred to me, while I was drafting my first TEDx talk, that the notion of such slower interstellar world ships also provides a more impartial venue to discuss critical human survival questions. Colony ships allow us to consider these questions with NO dependence on conventions or biases. If designing a society from scratch, one is free to start anew to fit the facts as they are discovered. On Earth, however, when dealing with questions of population size, environmental stability, amount of territory per person, and governance model, the debates are typically won by cultural edict (e.g. no birth control) or warfare (quest for territory or power). So, after all that, I realized that colony ships merited far more attention than I originally gave them, and hence, we will need to track down suitable pioneers to cover those issues too as part of Tau Zero.

Unbiased Physics

When it comes to one of my pet topics – propulsion physics and the quest for space drives – I ran into another facet of impartiality. I found that many physicists do not like to work on problems with potential applications since the application ‘taints the purity’ of the research. Instead they want to be driven by curiosity alone. In other words, they do not want to be biased. In the quest for propulsion physics, where I really hope a space drive method can be found, I have an ingoing bias. I want the results to turn out a certain way. This creates a conflict of interest in how I might view – or skew – the results. To make genuine discoveries, however, I must discipline myself to avoid imposing such biases. Although I can let my wishful musings help me pose the key questions, to get real progress I must also let the findings – unbiased findings – answer those questions. I must accept the results as they unfold.

Take the case of black holes in contrast to traversable wormholes or even warp drives. Studying black holes has revealed insights about spacetime warping, presumably without bias since no desired result is sought. But if one studies the very same physics in the context of faster-than-light wormholes or warp drives, one might get biased results because of wanting such devices to be feasible. Fortunately, much research published on these topics has maintained the rigor to avoid the taint of such biases. Insights into spacetime physics are also being learned by pondering warp drives and wormholes. These questions are even presented as homework problems in textbooks (e.g. Hartle (2003) Gravity: An Introduction to Einstein’s General Relativity).

The irony is that even the curiosity-driven research has implicit biases – that natural sense of ownership that a person has for their research ideas. There is an urge – even in this case – to have the findings prove the author’s pre-conceived point. This is just a human norm. High-quality physicists can discipline themselves to separate out this bias. In contrast, I’ve also seen physicists discuss their ideas with the same possessiveness as kids with toys on a playground. Regardless of our motivation in searching for new knowledge, we must maintain vigilance to avoid imposing our own biases on the findings, even the implicit bias of self.

tzf_img_post

A Look Inside the 100 Year Starship Idea

Technology fails at the damnedest times, which is particularly ironic when discussing something as futuristic as a starship. But then, a starship launched in a hundred or more years won’t be worrying about small cassette recorders like my little Olympus, which chewed up the tape on which I was recording the June 16 teleconference held by DARPA’s David Neyland about the 100 Year Starship Study. Fortunately, I am a wizard at note-taking by hand, which comes from my love of fountain pens (I collect and repair vintage instruments) and enjoyment of script on a yellow legal pad. I always take notes by hand as well as taping where possible, a good thing because I didn’t realize what had happened to the tape until after the teleconference had ended.

Neyland, who is director of DARPA’s Tactical Technology Office, is an engaging man with a bit of a penchant for science fiction — he mentioned Heinlein as an inspiration, but also gave credit to Jules Verne. After all, it was all the way back in 1865 that Verne came up with From the Earth to the Moon, a remarkable achievement, Neyland noted, when you considered that the US was just coming out of the Civil War at that time. Yet Verne’s imagination not only delivered an idea, but also managed to communicate the excitement of a lunar voyage to later generations. That 100-year time interval fed into Neyland’s thinking about what might come to fruition another century from now, and conversations with Pete Worden at NASA Ames firmed up the idea.

The 100 Year Starship is intended as a small study that will produce ancillary benefits. If you think back to DARPA’s role in the technology of today, Neyland said, what comes to mind right away is the Internet. DARPA did not, contrary to some popular accounts, invent the Internet. What it did do was to come up with ways to connect wired computers and facilitate the exchange of data between them. You can find other examples, as Neyland did: GPS technology received early DARPA attention in the 1960s, while the methods by which cellular telephone towers exchange information, used all over the world, were another early DARPA investment.

Can a starship study produce ancillary benefits? Presumably it can, and those benefits might run across a wide spectrum of human needs starting with energy. Neyland likened what the 100 Year Starship Study is trying to do to the early space program, recalling that many of the benefits from that effort simply faded into commonplace reality as time went by. “If you’ve ever gone into a store and bought a DeWalt drill,” he noted, “you probably don’t think about the fact that cordless drill and battery technology like this goes back to tools needed in the space program.”

So where is all this going? Centauri Dreams readers will recall that there was a conference in California last January in which issues about starship development, ranging all the way from the physics involved to philosophy and ethics, were discussed. A synopsis of the workshop is about to be released on the 100 Year Starship Study Web site.

Addendum: The synopsis is now available.

We’ve recently talked about the study’s Request for Information, and published two responses in these pages. Neyland said there were over 150 responses to the RFI, but acknowledged that they ranged across the board, from serious examinations of the issue to applications to join the starship’s crew (about as big a misreading of what the 100 Year Starship Study is trying to accomplish as is imaginable).

A Request for Proposals will be out by mid-summer, followed by a symposium in Orlando — I’ve already posted the DARPA news release on that one. In November, a grant will be provided to a single organization or individual, assigning what is left of the original seed money, $1 million of which came from DARPA and $100,000 from NASA — the grant should total in the vicinity of $500,000. Making the case for why their organization should be awarded the grant will be the work of those proposing ideas through the RFP process, at which point, when the grant is awarded, Neyland said that NASA and DARPA will both walk away from the effort. It will be up to the winner of the grant to turn the 100 Year Starship idea into a long-term commitment.

So there you are. The idea is to seed a project that will produce spin-offs ranging from agriculture to propulsion to ethics and environmental issues, in the DARPA way of funding new efforts and letting them bloom. Benefits should accrue in research and education along the way, with success in developing the work leading to a cycle of investments that can bring more money in to become a self-sustaining effort. So I stress again, the 100 Year Starship Study (to which the Tau Zero Foundation, among others, will be making a proposal) is not about building a starship. It is about solving problems that will one day have to be solved, with spinoffs along the way, and the hope that the technologies developed may one day evolve into the real thing.

tzf_img_post

100 Year Starship Study: Call for Papers

We’re keeping a close eye on the 100 Year Starship Study, and with the call for papers for its upcoming conference just issued, I want to run this verbatim.

Addendum: The DARPA teleconference for the 100 Year Starship Study ended about 1215 EST. I’m compiling my notes and should have something up about it either later this afternoon or tomorrow.

DARPA Encourages Individuals and Organizations to Look to the Stars; Issues Call for Papers for 100 Year Starship Study Public Symposium

In 1865, Jules Verne put forward a seemingly impossible notion in From Earth to the Moon: he wrote about building a giant space gun that would rocket men to the moon. Just over a century later, the impossible became reality when Neil Armstrong took that first step onto the moon’s surface in 1969.

A century can fundamentally change our understanding of our universe and reality. Man’s desire to explore space and achieve the seemingly impossible is at the center of the 100 Year Starship Study Symposium. The Defense Advanced Research Projects Agency (DARPA) and NASA Ames Research Center (serving as execution agent), are working together to convene thought leaders dealing with the practical and fantastic issues man needs to address to achieve interstellar flight one hundred years from now.

DARPA and NASA Ames Research Center are soliciting abstracts for papers and/or topics/members for discussion panels, to be presented at the 100 Year Starship Study Symposium to be held in Orlando, Florida from September 30 through October 2, 2011.

The symposium is expected to attract roughly hundreds of people from around the world. Speaking abstracts for papers and proposed panels should be submitted online at www.100yss.org by 2:00 pm ET on Thursday, July 8, 2011.

“This won’t just be another space technology conference – we’re hoping that ethicists, lawyers, science fiction writers, technologists and others, will participate in the dialog to make sure we’re thinking about all the aspects of interstellar flight,” said David Neyland, director of the Tactical Technology Office for DARPA. “This is a great opportunity for people with interesting ideas to be heard, which we believe will spur further thought, dreaming and innovation.”

The conference will include a series of tracks. Individuals may submit speaking abstracts directly related to these topics, or they can propose entirely different ideas.

  • Time-Distance Solutions [propulsion, time/space manipulation and/or dilation, near speed of light navigation, faster than light navigation, observations and sensing at near speed of light or faster than light]
  • Education, Social, Economic and Legal Considerations [education as a mission, who goes, who stays, to profit or not, economies in space, communications back to earth, political ramifications, round-trip legacy investments and assets left behind]
  • Philosophical, and Religious Considerations [why go to the stars, moral and ethical issues, implications of finding habitable worlds, implications of finding life elsewhere, implications of being left behind]
  • Biology and Space Medicine [physiology in space, psychology in space, human life suspension (e.g., cryogenic), medical facilities and capabilities in space, on-scene (end of journey) spawning from genetic material]
  • Habitats and Environmental Science [to have gravity or not, space and radiation effects, environmental toxins, energy collection and use, agriculture, self-supporting environments, optimal habitat sizing]
  • Destinations [criteria for destination selection, what do you take, how many destinations and missions, probes versus journeys of faith]
  • Communication of the Vision [storytelling as a means of inspiration, linkage between incentives, payback and investment, use of movies, television and books to popularize long term research and long term journeys]

DARPA contends that the useful, unanticipated consequences of such research – benefits from improved propulsion to energy storage and life support – can ultimately benefit the Department of Defense and to NASA, as well as the private and commercial sector.

The 100 Year Starship Study aims to culminate in the creation of a self-sustaining organization that will tackle all the issues and challenges inherent in long duration interstellar space flight. Additional information about the project may be found by visiting www.100yss.org. The public symposium is intended to seed creative energy to “kick-start” long term research goals.

tzf_img_post

100 Year Starship Study Public Symposium

The 100 Year Starship Study being developed through DARPA and NASA Ames now has its Web site up, from which the following:

DARPA and NASA are jointly planning the 100 Year Starship Study Symposium that will be held from September 30 through October 2, 2011 in Orlando, FL. The goal of the symposium is to promote discussions that will bring us closer to standing up an organization that can shepherd efforts to help achieve interstellar flight in the next century. The symposium is expected to attract roughly 2,000 people from throughout the United States as well as from foreign countries. The public symposium is a follow up to the January Strategic Planning Workshop.

In addition to keynote and plenary sessions, the symposium will have a set of seven tracks built around the following topics:

  • Time-Distance Solutions
  • Education, Social, Economic
  • Legal Considerations and Philosophical and Religious Considerations
  • Biology and Space Medicine
  • Habitats and Environmental Science
  • Destinations
  • Communication of the Vision

tzf_img_post

Long: Toward an Interstellar Institute

Today we continue with responses to the Request for Information from the 100 Year Starship study. Kelvin Long is senior designer and co-founder of Project Icarus, the ambitious attempt to design a fusion starship. A joint project of the British Interplanetary Society and the Tau Zero Foundation, Project Icarus takes its inspiration from the original Project Daedalus, updating and extending it with new thinking and new technologies. Here Kelvin considers how a research organization tasked with developing something as ambitious as a starship can function and prosper. And he would have considerable insight into the matter — as a Project Icarus consultant, I’ve never seen so dedicated and energetic a team as the one he put together. Its final report will be an essential work in interstellar propulsion studies.

Kelvin Long completed his Bachelors degree in Aerospace Engineering and Masters degree in Astrophysics at Queen Mary College, University of London. He is a Fellow of The British Interplanetary Society, Fellow of the Royal Astronomical Society, Member of the American Institute Aeronautics & Astronautics, a Chartered Physicist and a Practitioner of The Tau Zero Foundation. He has published numerous articles and papers on various aspects of space travel. His Ph.D work is on the topic of Inertial Confinement Fusion, a key player in both the Daedalus and Icarus designs.

Project Icarus/TZF

A Personal Response to DARPA-SN-11- 41 RFI

100 Year StarshipTM Study

Kelvin F Long[ref]Note that the author is a British National based in the United Kingdom.[/ref]
BEng Msc CPhys FBIS FRAS MAIAA
Icarus Interstellar & Tau Zero Foundation (non-profits)

Abstract

This is a response to the DARPA solicitation requesting information for the 100 Year Starship Study. Preliminary ideas for a (long term) research model and Interstellar Institute for Aerospace Research (IIAR) are presented. The views expressed in this document represent the authors only and not the official views of Icarus Interstellar or the Tau Zero Foundation. This paper is a submission of the Project Icarus Study Group.

1 Introduction

The ambition of interstellar flight has been the subject of many science fiction novels [1-3] and continues to inspire a large number of academic papers and books [4-9]. Despite this interest, it has generally been the public belief that interstellar flight is speculative engineering. In 1969 man landed on the Moon, but before that stupendous achievement could be realized it had to first be demonstrated that such a thing was possible. Hence in the 1930s members of the British Interplanetary Society (BIS) undertook a study for a Lunar Lander [10], presenting the first such engineering concept and moving the subject from speculative fiction to credible engineering. Similarly, before the first interstellar probe can be launched it must first be demonstrated that such a thing is feasible. In the year 2033 the BIS will have reached its 100th anniversary and its Journal, JBIS, has been the home of visionary thinking since its first publication in 1934 – it is the oldest astronautical Journal in the world [11]. Members of the BIS were also the first in history to publish an academic paper on the subject of interstellar flight [12] and in the 1970s members pioneered the future by the design of a theoretical Starship called Project Daedalus [13]. Using an inertial confined fusion based propulsion system the probe would reach its stellar target in around half a century. Project Icarus was founded in 2009 and is an international project to redesign the Daedalus vehicle with modern knowledge as a ‘designer capability’ exercise [14]. An international team has been assembled and is hard at work on the calculations in a (volunteer) capacity. All of the above demonstrates that the “First Steps” towards the stars have already been made in advance of the DARPA RFI. The “Second Step” (for DARPA, TZF or others) is to bring this research together into a century long co-ordinated program. In reality, the first interstellar probe launch is likely at best one to two centuries away as has been consistently demonstrated [15-18]. To launch even an unmanned interstellar probe in advance of the year 2100 would likely require significant and sustained technology investments several times greater than those of today [19].

The means by which the first interstellar probe is to be propelled remains a matter of discussion awaiting technological breakthroughs. Although some clear contenders have emerged in recent decades, from external nuclear pulse [20], to fusion engines [21], to sail beaming systems [22-24]. Other more exotic alternatives includes antimatter based systems [25] or the use of interstellar ramjets [26] which requires no on vehicle propellant. One aspect that could changes all this is the discovery of a breakthrough method of propulsion physics such as proposed for the famed warp drive of science fiction, now the subject of rigorous metric engineering using the tools of General Relativity and Quantum Field Theory [27-29]. The potential for such propulsion systems (as well as others) and how to manage such research has been well studied by others [30-31]. The launch of human based Starships will require massive engineering and therefore large infrastructure requirements, as evidenced by studies of Worlds Ships [32-33], placing it many centuries into the future. Other than Project Orion and Project Daedalus, various vehicle design studies have been undertaken historically that are relevant to the design of a Starship, to differing degrees of engineering accuracy. This includes VISTA [34], AIMStar [35] and the student study LONGSHOT [36], for example.

How can the pace of interstellar research be accelerated so as to facilitate an earlier launch window? One method is to think about the interstellar roadmap by planning interstellar precursor missions which go to 200 AU, 1000 AU and beyond. Several such proposals have been made over the years [37-40]. What makes such proposals feasible (as well as the full interstellar missions) is consistency with the Technology Readiness Levels [41]. These are the guiding tool for all aerospace development even at national space agencies [42] and the emphasis for bringing about an interstellar mission must be to encourage and facilitate research into low TRL (~1-3) propulsion schemes and other technologies. An approach for the planning of visionary technology development programmes, the Horizon Mission Methodology, has been constructed and is an ideal tool for this purpose [43]. Although in past generations significant (largely theoretical) progress has been made towards the eventual launch of the first interstellar mission, this research has been largely uncoordinated, unfocussed and performed by volunteers. If the first launch of an interstellar probe is indeed to take place in the next two centuries, then what is required is a change of strategy to include a significant investment program and the formation of an Interstellar Institute for Aerospace Research (IIAR). The proposal for an Interstellar Institute has also been made by the former NASA physicist and current President of the Tau Zero Foundation Marc Millis, in private communication, and this is one of the long term aspirations of the Foundation.

An Interstellar Institute would coordinate research relating to all aspects of an interstellar mission, from the manufacturing and assembly, launch and construction, fuel generation or acquisition, to communications and science monitoring. Such a body should also encourage research spanning the range of propulsion options. By not closing off any options today each method progressives incrementally until a front runner clearly emerges – ad astra incrementis. The Institute logo spells out the letters of the name. The trajectory of a spacecraft is shown, passing three stars which get progressively larger, emphasising that with incremental steps the stars will get closer. The spacecraft exceeds the position of the stars and continues out into the galaxy showing that with visionary (but credible) goals anything is possible. The Institutes motto would be along the lines “Leading Astronautical Research to the Stars”, emphasising academic rigour in all studies.

2 Research Model

In this document we describe an optimistic (long term) vision for an Interstellar Institute manned by permanent staff, hosting resident academics and assuming the support of wealthy philanthropist(s) to get it started (but not to sustain it). If there were an Interstellar Institute this would attract academics from around the world to come together for weeks or months at a time to jointly work on some of the major technical issues or explore a new area of physics where a fundamental breakthrough in our understanding may come. Design teams could also be assembled to work on specific problems, such as: development of technology for the unfurling of a solar sail in deep space; engineering an interstellar ramjet; reducing the negative energy requirements of a warp drive; or finding ways of mining Helium-3 from the gas giants in a cost effective way. The basis of all research will be to improve the Technology Readiness Levels of a diverse range of spacecraft technologies, particularly pertaining to propulsion. It would also be the location for a major conference and would act as the international focus point for all interstellar related research. This is what we need to make interstellar research move substantially forward and allow innovative ideas to emerge and be applied efficiently to the progression of the subject. It needs to be moved from the volunteer sidelines of science, given some major investment, and an institute to focus the research and provide an exciting atmosphere where an optimistic vision for space exploration exists. The Aim, Vision and Mission of the Institute are described as follows:

  • Aim : To co-ordinate and facilitate international research excellence towards solving the engineering and physics obstacles associated with interstellar flight and to spur technological breakthroughs.
  • Vision : To encourage robotic and human missions to the stars in the coming centuries.
  • Mission : [1] To be proactive in co-coordinating international research associated with international flight and to demonstrate research leadership in the field of astronautics [2] To conduct outstanding educational activities to better communicate to the public the importance and the credible feasibility of interstellar flight [3] To work towards an agreed set of short, medium and long terms goals that are consistent with the Institutes optimistic vision for interstellar flight.

2.1 Organizational Governance & Finance Model

A non-profit organization manned largely by volunteers does not have the man power or resources to undertake a large scale research program greater than 10s of people. A business does have this capacity but is subject to risks associated with financial markets and competition. Government can protect itself against risk and can manage large scale programs; however, inherent bureaucracy, micro-management and leadership changes due to changing political policies create an environment that is unstable, costly (usually measured in billions of dollars) and over time become less flexible to positive innovation and change. The best strategy therefore is to combine the best of all three structures whilst throwing away the worst parts.

The cost of the Institute construction is expected to be of order ~$30-50 million. The cost of the initial research investment program is expected to be of order ~$100 million. Annual funding programs of order ~$10-20 million per year are expected until self-revenue generation emerges. In essence the Institute is a non-profit research body, more similar to a University rather than an industrial company, which specialises in research and academic educational programmes in physics and engineering relating to deep space missions.

The Interstellar Institute would be founded around the year 2020, allowing time for sufficient planning and construction work. The initial start fund program to begin the planning stage is of order several hundred thousand dollars, consistent with the DARPA RFI. The funding structure is described in the diagram above, with innovative technologies leading to patents and new engineering products for space. The organisation that comes closest to this model is the Perimeter Institute for Theoretical Physics in Waterloo, Canada, which was founded in 1999 by Mike Lazaridis who owns the Blackberry Company. New Scientist has said of PI: “…what may be the most ambitious intellectual experiment on Earth” [44]. The Interstellar Institute can exceed this by reaching for new heights in intellectual leadership and turning the energies of international groups of volunteers into a coordinated research programme that is focused on the launch of the first interstellar probe in this century or the next.

2.2 Organizational Structure

The Institute would be an independent non-profit organized with a Technical Advisory Committee acting as the Board of Directors to oversee all activities. A core membership would support the non-profit status. The core of its work program consists of three elements:

1. Theoretical research to produce breakthrough solutions to problems in physics and engineering relating to deep space missions utilizing a variety of propulsion systems and technologies, including concept development for real spacecraft designs.

2. Education to bring about a greater awareness of the viability for future interstellar missions and how they might impact our cultural and technological growth.

3. Public outreach to communicate the vision and feasibility of interstellar travel and inspire the world that such a vision is essential to a secure and peaceful future for the human race in space.

Additionally, the Institute may undertake the following two activities:

1. Laboratory based experiments to improve the Technology Readiness Levels of key systems and sub-systems likely required for a deep space mission.

2. Contributions to actual space missions by development of a sub-system that would be required for a deep space mission.

The majority of the work undertaken by the Institute is expected to be theoretically based (~70%), performed by the visiting academics, with perhaps a minor element (~10%) dedicated to actual laboratory and space environment mission development. The remainder of the program will be dedicated to education and public outreach (~20%). Typically the Institute would consist of around 30 administrative and facility staff, 20 research co-coordinators and around 150-200 resident researchers, of which two thirds would be visiting. All staff will be designated Support, Management, Resident Researcher or Visiting Researcher. Additionally, non-academics/non- professionals (common in this field) who has showing a grasp of the technical issues may also become visiting residents, awarded on a grant basis, regardless of background.

The educational program would consist of regular symposia and conferences in a lively and dynamic research atmosphere. The highlight would be a bi-annual Conference for Interstellar Flight, reviewing the latest research in the field. One aspect of the outstanding educational program would be an annual summer residential course, taught by a combination of permanent and visiting residents. The course will lead to a Postgraduate Certificate in Interstellar Engineering, to be awarded by a local University with their co-operation and involvement. The syllabus would cover all aspects of spacecraft design technology and mission performance; from communications to structure and materials to propulsion. Orbital mechanics and trajectory analysis would also be included, as well as basic planetary and solar physics science. There is also the potential for creating a full Masters program in Interstellar Engineering, to include a design project, as part of a summer school attended twice in succession. Doctoral research programs may also be possible. The Institute is to be a world leader in the implementation of the latest technologies in the everyday activities of its residents with many symposia and conferences transmitted live to the World Wide Web. On occasions the entrance lounge of the Institute can be easily turned into a banquet hall for conference dinners whilst listening to some cultural music. The entrance hall would also be an exhibition arena showcasing either the latest technologies or artwork which helps us to understand the challenges of humans in space.

The Institute governing structure is now defined.

– Institute Executive: Director Institute; Deputy Director; Executive Committee (Division Heads + selected volunteer external advisors).

– Division of Research Management: Division Head; Deputy Division Head; Building Management; Office Administration; Publications & Media; Building Maintenance (facilities, structure, gardening, health & safety); Business & Finance; Human Resources, Business Marketing & Finance; Archives & Exhibition (museum, library); Catering Facilities; IT Services (maintaining on site computers, networks and supercomputing clusters); Office of Future Developments (expansion of Institute); Office of International Research Co- ordination (co-coordinating residents/sabbaticals); Office of Space Mission Liaison (co- coordinating interactions with commercial/agency spacecraft missions); Office of Laboratory Research (management of on site laboratories or test technology).

– Division of Science & Technology: Division Head; Senior Advisory Committee; Leader Instruments & Payload Group; Leader Computing & Electronics Group; Leader Power Systems & Thermal Control Group; Leader Structure & Materials Group; Leader Risk, Reliability & Spacecraft Protection Group; Leader Space Infrastructure & Vehicle Assembly Group; Leader Space Communications, Navigation & Guidance Control Group; Leader Astronomy & Exploration Group; Leader Human Colonization.

– Division of Reacting Engines: Division Head; Senior Advisory Committee; Chemical Propulsion Group; Electric Propulsion Group; Nuclear Fission Group; Nuclear Fusion Group; Antimatter propulsion Group; Advanced Particles & Fields Group.

– Division of Propellantless Propulsion: Division Head; Senior Advisory Committee; Solar & Microwave Sails Group; Particle Beams Group; Interstellar Ramjets Group; Mass Drivers Group.

– Division of Breakthrough Physics: Division Head; Senior Advisory Committee; Leader Space Drives Group (dean drive, disjunction drive); Leader Metric Engineering Group (warp drive, black holes, worm holes); Leader Particle & Information Transmission (teleportation, tachyons).

3 The Interstellar Institute for Aerospace Research

The building for the Interstellar Institute should be visionary, futuristic and visually stimulating. One example for such a building would be the use of a pyramid shaped structure, a symbol of permanence and the need for long term planning in enduring programmes. It would be constructed of glass with layers of solar panels to supply the electrical energy for the building. Inside would be the building itself, constructed in stages analogous to the stages of a rocket. The ground floor level would contain the main conference hall, cafeteria, open air library, exhibition space and perhaps a Japanese garden. The higher levels would contain smaller conference rooms and offices for permanent and visiting residents working on the problems of interstellar flight. At the top of the building is the observational Skydome, shaped to represent an interstellar payload on top of each engine stage. The Skydome is maintained to low light levels, to allow visualization of the stars at night. Some moderate telescopes are permanently in place for the enjoyment of the visitors. The total floor area inside the pyramid is around 10,000 square meters, being 100 m on each side. The Institute would become the worlds leading centre for research into interstellar flight, promoting research excellence and stimulating scientific breakthroughs. The institute is to be a place of positive inspiration, where the best of humanity comes together to focus on solving the obstacles to the launch of the first interstellar mission.

On the very apex of the building is a high gain radio antenna for the sending and receiving of deep space signals for participation in some monitoring programs. On the first level is the main conference room capable of holding up to 300 people, using modern electronic visualization tools. On the second level is another, but smaller, conference room capable of holding up to 100 people. Small meeting rooms are included on the third and fourth level to hold up to 20 people. Each of the levels has a small balcony and railing which comes off of each office, providing for pleasant views over the arena and Japanese garden. In the middle of the third to fifth floor is a hollow opening allowing windows across the way. At the rear of the building (external to the pyramid) is a small observatory to be used for exoplanet observations to help determine the first astronomical mission target, focussed on stars within 20 light years. Entrance to this is enabled through the Japanese garden which is also a bird atrium. The overall design objective of the building is to inspire the designers, providing for a peaceful and relaxing atmosphere whilst being an innovative design using parallels with engineering technology from interstellar spacecraft designs.

References

[1] Anderson, P, “Tau Zero”, Orion Books, 1970.
[2] Niven, L & J.Pournelle, “The Mote in God’s Eye”, Simon & Schuster, 1974.
[3] Clarke, A.C, “Rendezvous with Rama”, Gollancz, 1973.
[4] Spencer, D.F et al., “Feasibility of Interstellar Travel”, Acta Astronautica, 9, pp.49-58, 1963. [5] Forward, R.L, “A Program for Interstellar Exploration”, JBIS, 29, pp.611-632, 1976.
[6] Gilster, P, “Centauri Dreams, Imagining & Planning Interstellar Exploration”, Springer, 2004.
[7] Matloff, G.L & E.Mallove, “The Starflight Handbook, A Pioneers Guide to Interstellar Travel”, Wiley, 1989.
[8] Long, K.F, “Fusion, Antimatter & the Space Drive: Charting a Path to the Stars”, JBIS, 62, pp.89-98.
[9] Long, K.F, “Deep Space Propulsion: The Roadmap to Interstellar Flight” (book), Springer, Publication Pending
2011.
[10] Ross, H.E, “The BIS Space Ship”, JBIS, 5, 1939.
[11] Parkinson, R, “Interplanetary, A History of the British Interplanetary Society”, BIS Publication, 2008.
[12] Shepherd, L.R, “Interstellar Flight”, JBIS, 11, 1952.
[13] Bond, A & A.R.Martin, “Project Daedalus – Final Report”, JBIS Special Supplement, 1978.
[14] Long K.F., Obousy R.K., Tziolas A.C, Mann A, Osborne R, Presby A, Fogg M, “Project Icarus: Son of Daedalus – Flying Closer to Another Star”, JBIS, Vol. 62 No. 11/12, pp. 403-416, Nov/Dec 2009.
[15] Dyson, F, “Interstellar Transport”, Physics Today, 68, 41-45, 1968.
[16] Cassenti, B.N, “A Comparison of Interstellar Propulsion Methods”, JBIS, 35, pp.116-124, 1982.
[17] Millis, M.G, “First Interstellar Missions, Considering Energy and Incessant Obsolescence”, JBIS, Publication Pending, 2011.
[18] Baxter, S, “Project Icarus: Three Roads to the Stars”, JBIS, Publication Pending, 2011.
[19] Long, K.F, “Project Icarus: The First Unmanned Interstellar Mission, Robotic Expansion & Technological Growth”, JBIS, Publication Pending, 2011.
[20] Dyson, G, “Project Orion – The Atomic Spaceship 1957-1965”, The Penguin Press, 2002.
[21] Long, K.F, R.K.Obousy & A.Hein, “Project Icarus: Optimization of Nuclear Fusion Propulsion for Interstellar Missions”, Acta Astronautica, 68, pp.1820-1829, 2011.
[22] Forward, R.L, “Starwisp: An Ultra-Light Interstellar Probe”, Journal of Spacecraft & Rockets, 22, pp.345-350, 1985.
[23] Landis, G.A, “Beamed Energy Propulsion for Practical Interstellar Flight”, JBIS, 52, 1999.
[24] Benford, G & J.Benford et al., “Power-Beaming Concepts for Future Deep Space Exploration”, JBIS, 59, 2006.
[25] Cassenti, B.N, “Design Considerations for Relativistic Antimatter Rockets”, JBIS, 35, pp.396-404.
[26] Bussard, R.W, “Galactic Matter and Interstellar Flight”, Acta Astronautica, 16, Fasc4, 1960.
[27] Alcubierre, A, “The Warp Drive: Hyper-Fast Travel within General Relativity”, Class.Quantum Grav, 11, L73-L77, 1994.
[28] Long, K.F, “The Status of the Warp Drive”, JBIS, 61, PP.347-352, 2008.
[29] Obousy, R .K & R.Cleaver, “Warp Drive: A New Approach”, JBIS, 61, pp.364-369, 2008.
[30] Millis, M, “Breakthrough Propulsion Physics Research Program”, NASA TM-107381, 1996.
[31] Millis, M & E.W.Davis, “Frontiers of Propulsion Science”, Progress in Astronautics & Aeronautics, 227, AIAA, 2009.
[32] Bond, A & A.R.Martin, “World Ships – An Assessment of the Engineering Feasibility”, JBIS, 37, 6, 1984.
[33] Martin, A.R, “World Ships – Concept, Cause, Cost, Construction & Colonization”, JBIS, 37, 6, 1984.
[34] Orth, C.D, “Parameter Studies for the VISTA Spacecraft Concept”, UCRL-JC-141513, 2000.
[35] Gaidos, G et al., “AIMStar: Antimatter Initiated Microfusion for Pre-cursor Interstellar Missions”, Acta Astronautica, 44, 2-4, pp.183-186, 1999.
[36] Beals, K.A et al., “Project LONGSHOT, An Unmanned Probe to Alpha Centauri”, N89-16904, 1988.
[37] Jaffe, L.D et al., “An Interstellar Precursor Mission”, JBIS, 33, pp.3-26, 1980.
[38] McNutt, R.L, Jr, “Interstellar Probe”, White Paper for US Heliophysics Decadal Survey, 2010.
[39] Long, K.F & R.Obousy, “Starships of the Future, The Challenge of Interstellar Flight”, Spaceflight, 53, 4, 2011.
[40] Maccone, C, “FOCAL – Probe to 550 or 1000 AU: A Status Review”, JBIS, 61, pp.310-314, 2008.
[41] Mankins, J.C, “Technology Readiness Levels”, A White Paper, NASA, 1995.
[42] Schmidt, GR & M.J.Patterson, “In-Space Propulsion Technologies for the Flexible Path Exploration Strategy”, Presented 61st IAC Prague, IAC-10.C4.6.2, 2010.
[43] Anderson, J.L, “Leaps of the Imagination: Interstellar Flight and the Horizon Mission Methodology”, JBIS, 49, pp.15-20, 1996.
[44] “Building on Success – Five year Plan”, Perimeter (PI) Institute for Theoretical Physics, 2009.

tzf_img_post

100 Year Starship Study: A Response

by Marc Millis

“The Defense Advanced Research Projects Agency (DARPA) has initiated a study to inspire the first steps in the next era of space exploration—a journey between the stars.” So reads the Request for Information document (RFI) that DARPA released recently, seeking ideas for organization, business model and approach for a self-sustaining investment vehicle to study these matters. Note that word ‘study,’ because what DARPA talks about in its recent RFI is this: “The 100 Year StarshipTM Study is a project seeded by DARPA to develop a viable and sustainable model for persistent, long-term, private-sector investment into the myriad of disciplines needed to make long-distance space travel practicable and feasible.”

We’ve talked about the 100 Year Starship study before, particularly in Marc Millis’ article on his participation at the first meeting held to discuss the idea. Now Millis, former head of NASA’s Breakthrough Propulsion Physics project and founding architect of the Tau Zero Foundation, is releasing his response to the RFI. In coming days, we’ll look at responses from the Project Icarus team as well, in an attempt to fill you in on where things stand. Look for the Call for Papers for an upcoming conference on the 100 Year Starship study as part of this coverage.

?SUBMISSION TO THE

REQUEST FOR INFORMATION (DARPA-SN-11-41)

100 YEAR STARSHIP [ORGANIZATION] STUDY

Marc G Millis
Tau Zero Foundation
P.O. Box 26027
Fairview Park, OH 44126

Organizations that can sustain progress for more than a century already exist (universities), but the goal to create starships introduces further challenges. Since acquiring funds, managing endowments, making nominal progress, and longevity are already possible, this submission concentrates on the following less obvious organizational challenges for making the game- changing advances and world-scale investments necessary for star flight:

  • Demonstrate that contributions to the new 100-yr starship organization will produce more progress than can be achieved through contributions to existing venues.
  • Accommodate world-wide interests and concerns, since interstellar flight is an endeavor that affects all humanity.
  • Ensure that the organization stays true to its mission rather than devolving to just serving its managing employees (a common pitfall).
  • Balance the need for continually acquiring fresh insights (to avoid group-think, stagnation, parochialism) with the stability needed to stay focused on the mission.
  • Provide flexibility to adapt to unforeseeable opportunities and constraints.
  • Balance resources across the small seedling investigations needed to discover methods of interstellar flight, with the larger work to apply those discoveries to create mission infrastructure and starships.
  • Balance investments across both evolutionary and revolutionary approaches (applying lessons from history about disruptive pioneers).
  • Distinguish potentially viable revolutionary approaches (that sound crazy at first), from the more numerous, genuinely crazy ideas.
  • Establish win-win intellectual property agreements where top-innovators will choose to work with the 100-yr organization, and where the organization also reaps sufficient returns to sustain its mission.
  • Disseminate information responsibly to the public, without disclosing too many technical details that might compromise future revenue generation.

Lessons from different types of organizations:

NASA’s charter makes it the expected organization to create starships, but NASA (and its supporting aerospace community) have evolved per typical patterns to become short-sighted and constrained to their founding legacy. This offers lessons about stagnation and self-absorption.

Educational institutions continue to advance knowledge applicable to interstellar missions, but they do not have the organizational capacity to align and apply all those individual elements to build starships, or the international authority to launch interstellar missions. They also often lack the ability to investigate revolutionary ideas since such ideas pose risk to their reputations. Their revenues include tuitions, licensing of innovations, and huge donations from successful, loyal alumni. Their intellectual resources include a continual flow of young students with fresh ideas, moderated by seasoned professionals.

Professional and public societies, such as the British Interplanetary Society (78 yrs old), provide venues for vetting and advancing new, unconventional ideas, but they lack the infrastructure, coherency, and resources to launch ambitious missions.

Corporations build devices that apply the knowledge gained from universities and societies, but need huge investments to build huge devices (starships) – commitments on the scale of governments. A pitfall of corporations is that they typically follow a pattern of emergence, achievement, and eventual obsolescence. The do not inherently have the longevity to pursue a cause, but rather are optimum for introducing new products.

Governments have the authority and resources to bring such notions to fruition, but are typically mired in internal bickering on near-term crises that preclude applying resources consistently to solve the long-range and difficult-to-comprehend ambitions… until those become a crisis.

And finally, although religious organizations have been used as models for longevity, their product (a belief system) is far easier to produce than scientific discoveries and functional space hardware. Additionally, given competing belief systems (plus righteousness), religions can evoke prejudice and conflicts that can impede the kind of world-scale collaborations needed for interstellar flight.

Scattered amongst all these venues are the elements for discovering methods for, and eventually launching, interstellar missions. Seeking the one best organizational structure to bring this to fruition will be a subjective exercise at best. There is no way to determine, rigorously and impartially, which methods will guarantee success. And if history is any indicator, any structure implemented today will have to adapt to unforeseeable constraints and opportunities. The notion of one, lasting organizational model might not be possible.

Instead, consider this recurring theme in history regarding achieving what was once impossible:

  • [Individual level] Pioneers, inspired by the possibilities and having the creativity and competence to make progress, create new knowledge toward solving those grand challenges. (e.g., Tsiolkovsky, Oberth, Goddard, von Braun, etc.)
  • [Group level] Those pioneers inspire more people to attempt to implement those visions, and typically volunteer organizations emerge that dabble in those ideas. After cycles of failures and successes, noteworthy progress results. (e.g. the first rocketry clubs, American Interplanetary Society, British Interplanetary Society, etc.)
  • [Corporations and Governments] Once a threshold of success has been demonstrated, corporations or governments apply those possibilities to their own interests (e.g., German V2 missiles, American Apollo Moon landing, etc).

While this pattern is not the only way that such things happen, this pattern happens often enough to suggest this strategy:

Find today’s pioneers, support them to accelerate their progress, and then filter out the best prospects. Once sufficiently viable approaches emerge – invest to bring those approaches to fruition.

When it comes to interstellar flight, none of the technical approaches that exist today are fully viable. At least 3 different estimates peg human readiness for an interstellar mission to be roughly 2-centuries away. This topic is still at the stage of finding pioneers and seeing what develops. It is no coincidence that new volunteer societies are emerging, such as the “Tau Zero Foundation,” “Peregrinus Interstellar,” “Project Icarus,” “Life Boat Foundation,” and others that are looking toward pioneering work to solve the challenges related to interstellar flight. This is a natural progression, unfolding today.

Similarly to how DARPA and NASA-Ames are looking outside of NASA to solve these challenges, so too did this author. After leading NASA’s “Breakthrough Propulsion Physics” project that addressed revolutionary ideas to solve the propulsion challenges of interstellar flight, this author realized that NASA was no longer the place for such aspirations. In 2010, an early retirement from NASA allowed full time to be devoted to the “Tau Zero Foundation” – an international network of roughly 40 accomplished researchers and journalists who pursue interstellar flight to provoke longer-range and higher-payoff progress. The foundation’s work is published in various journals and then conveyed to the public via the ‘Centauri Dreams’ news forum .

The organizational structure of Tau Zero was designed to take advantage of these historic patterns and avoid the recurring pitfalls. This includes methods to recognize and pursue disruptive, game-changing advances. It also includes methods to find the productive middle ground between wishful thinking and pedantic disdain. And as a result, Tau Zero’s practitioners are making progress. In 2010 they produced 2 books, 13 journal articles (or book chapters), 22 conference presentations, 22 media articles, plus 5 articles-per-week from the Centauri Dreams new forum. These numbers include the continuing progress of “Project Icarus” (design study for a fusion-based interstellar probe) and a few other ongoing projects.

By itself, Tau Zero does not answer all the challenges sought by the 100-yr starship organization. It is still missing a concerted revenue generation scheme, does not have all of the needed topic pioneers, and has no plans to actually launch missions. The presumption is that much research remains before mission implementation is ready to be addressed.

In this short submission, these methods can not be explained in detail, but several details have been published. For this first solicitation from the 100-year starship organization, it is hoped that introducing these issues and methods, along with this bibliography, will provide valuable guidance.

British Interplanetary Society, (continuous), (http://www.bis-space.com/)

Gilster, Paul. (continuous) Centauri Dreams – The news forum of the Tau Zero Foundation, (https://centauri-dreams.org/)

Klien, Eric. (continuous), Lifeboat Foundation, (http://lifeboat.com/ex/main)

Long, Kelvin. (continuous), Project Icarus, (http://www.icarusinterstellar.org/)

Millis, M. G. (2010), First Interstellar Missions, Considering Energy and Incessant Obsolescence. JBIS, 63, (publication pending)

Millis, M. G. (2010), Status Report on the Tau Zero Foundation. Centauri Dreams, 2010/Nov/19. (https://centauri-dreams.org?p=15379)

Millis, M. G. (2010), History Hints at a Decentralization of Future Space Activities, (IAC-10-E6.1.12). 61st IAC Prague, IAF.

Millis & Davis (eds). (2009), Frontiers of Propulsion Science. Vol 227 of Progress in Astronautics and Aeronautics, American Institute of Aeronautics and Astronautics (AIAA). [See in particular Ch. 2 about technology limits, and Ch. 22 about organizational methods]

Pacher, Tibor. (continuous) Peregrinus Interstellar, (http://www.peregrinus- interstellar.net/)

(c) Marc G Millis

tzf_img_post