The Institute for Interstellar Studies

by Kelvin F. Long I recently asked Kelvin Long to write an introduction to the Institute for Interstellar Studies he has created, and he was kind enough to send along a useful overview, along with a backgrounder on his own work: "Kelvin Long is an aerospace engineer and physicist. He is chief editor of the Journal of the British Interplanetary Society, author of the book Deep Space Propulsion: A Roadmap to Interstellar Flight, and was the key founder behind the starship design study Project Icarus. Since 2007 he has worked to catalyse the interstellar community through the organization of lectures, symposia, publications and design studies. He is currently the Executive Director for the Institute for Interstellar Studies, founded in August 2012." Here Kelvin describes the new Institute and relates its mission to prior work in deep space technologies. The subject of Interstellar Studies derives its name from a set of special red cover issues of the Journal of the British...

read more

A Space Telescope Enmeshed in History

It's been heartening to see renewed interest in the space program's past. Neil Armstrong's death surely had something to do with it, for the scattering of his ashes at sea, which occurred while the 100 Year Starship Symposium was in session, was a reminder of the dramatic days when public fascination with space was intense and the whole world rejoiced at Apollo 11's success. The memorial ceremony held at the National Cathedral in Washington the day before had focused everyone's gaze on that great mission, which remained in the air throughout, a continuing counterpoint to formal discussions and casual conversations in the hallways. Larry Klaes has passed along another historical marker, the fact that today could be called the 60th anniversary of the interplanetary probe. As in so many eventful astronautical moments, the British Interplanetary Society was involved. Eric Burgess and C. A. Cross had come to a BIS meeting in 1952 to read a paper called "The Martian Probe," which took the...

read more

The Psychology of Space Exploration: A Review

By Larry Klaes A new book looking at the inner lives of astronauts is Larry Klaes' subject today. Planning for long-term missions like a manned trip to Mars requires a great deal of work on closed systems, as we've recently discussed. But we also have to consider the psychological issues raised by confinement in a cramped environment for long durations, issues that are one thing in the confines of low-Earth orbit but perhaps another when far from the home world. Early on the morning of February 5, 2007, several officers from the Orlando Police Department in Florida were summoned to the Orlando International Airport, where they arrested a female suspect. This woman was alleged to have attacked another woman she had been stalking while the latter sat in her car in the airport parking lot. Judging by the various items later found in the vehicle the suspect had used as transportation to the Sunshine State all the way from her home in Houston, Texas, her ultimate intent was to kidnap and...

read more

SETI: Starship Radiation Signatures

Yesterday we pondered the possibility of detecting an interstellar craft as a new kind of SETI. If the energies needed to drive such a vessel are as titanic as we think, there could be a detectable signature, as Robert Zubrin pointed out in a 1995 paper. Zubrin's best case in visible light involved an antimatter engine whose exhaust could be detected from as far as 300 light years from Earth. That would cover a huge number of stars, as 100,000 exist within 200 light years of our planet. I suppose the classic starship detection occurs in Larry Niven and Jerry Pournelle's 1975 novel The Mote in God's Eye, where human starfarers using the 'Alderson Drive' -- which allows instantaneous jumps between stars -- detect an alien, laser-pushed lightsail. The starship is a throwback, an older technology that human interstellar methods have long superseded, one that contains a strange, asymmetric alien being, the first extraterrestrial humans have encountered. It's no surprise to learn that...

read more

Disruptive Planets and their Consequences

One of the joys of writing a site like Centauri Dreams is that I can choose my own topics and devote as much or as little time as I want to each. The downside is that when I'm covering something in greater depth, as with the four articles on antimatter that ran in the last six days, I invariably fall behind on other interesting work. That means a couple of days of catch-up, which is what we'll now see, starting with some thoughts on a possible planet beyond Neptune, a full-sized world as opposed to an ice dwarf like Pluto or Eris. This story is actually making the rounds right now, but it triggered thoughts on older exoplanet work I'll describe in a minute. It's inevitable that we call such a world Planet X, in my case because of my love for the wonderful Edgar Ulmer film The Man from Planet X (1951), in which a planet from the deeps wanders into the Solar System and all manner of trouble -- including the landing of an extraterrestrial on a foggy Scottish moor -- breaks out. Of...

read more

Interstellar (Precursor) Mission & Vehicle Design

by Marc Millis Tau Zero's first graduate student project has been completed. Berkeley Davis, a 2nd Lt. at the United States Air Force Institute of Technology, Dayton Ohio, completed his Masters thesis on a deep space probe to perform Claudio Maccone's gravitational lens mission (FOCAL). For those unfamiliar with FOCAL, it is a mission to utilize the gravitational lens effect that begins at approximately 550 AU from the Sun, one that in the view of Maccone will offer huge magnifications for the study of targets like the Cosmic Microwave Background. For more, see the Centauri Dreams archives. IMPETUS Maccone, Deep Space Flight and Communications: Exploiting The Sun as a Gravitational Lens (Springer, 2009). MISSION/VEHICLE STUDY Davis, Berkeley. R. (2012) Gravitational Lens: The Space Probe Design (Thesis), AFIT/GA/ENY/12-M06, Air Force Institute of Technology. To provide a realistic baseline on what is possible, the student was asked to constrain his design to commercially...

read more

Oxygen Detected at Saturn’s Moon Dione

We recently looked at biosignatures as part of a discussion about using polarized light to examine exoplanet atmospheres. As if on cue, we now get a reminder of how carefully the biosignature hunt must proceed. It's not enough, for example, to find one or two interesting gases in a distant atmosphere, for natural processes can account for potential biomarkers, which is why we need to find gases like ozone and methane, oxygen and carbon dioxide existing simultaneously. The most recent discovery from Cassini data puts an exclamation point on the matter with the discovery of molecular oxygen ions in the thin atmosphere of Dione, one of Saturn's 62 moons. With a radius of no more than 560 kilometers, Dione is evidently composed of a layer of water ice surrounding a rocky core. We are not, obviously, talking about a thick atmosphere around a world this small. Cassini and its CAPS instrument (Cassini Plasma Spectrometer) closed to within 503 kilometers of the surface in April of 2010,...

read more

Notes & Queries 11/21/11

Millis on The Space Show Marc Millis is now in Brussels for another TEDx talk -- I link here to the TEDx description of him as 'a rock star in the world of space geeks' that always gives him a chuckle. More about the talk as soon as I have the link for online viewing. All this reminds me to tell you that Marc and I were guests on David Livingston's The Space Show last week, with the MP3 now available at David's site. Although we did kick around some interstellar propulsion concepts, particularly in the call-in segments, we spent most of the time talking about Tau Zero and the 100 Year Starship project. If you want to hear about the nuts and bolts of Tau Zero including the interesting and developing university affiliations, check out the two-hour podcast. David is a superb interviewer. SF and the Sublime Gregory Benford recently posted Peter Nicholls' Big Dumb Objects and Cosmic Enigmas, a talk delivered in 1997 aboard the Queen Mary (now anchored at Long Beach, CA) on his site. Given...

read more

HARPS: Hunting for Nearby Earth-like Planets

Ever more refined radial velocity searches for exoplanets are reaching into the domain of lower and lower mass targets. It's natural enough that we're most interested in planets of Earth mass and even smaller, but as a new paper on the work of the European Southern Observatory's HARPS instrument reminds us, one of the great values of this work is that we're getting a broad view of how exoplanets form and evolve in their systems, no matter what their size. Characterizing not just planets but entire systems is becoming a profitable investigation. But small worlds continue to fascinate us, particularly in the hopes of finding possible abodes for life. HARPS' involvement in the hunt now includes an intense campaign to monitor ten stars that are relatively near our Sun, all of them slowly rotating and quiet solar-type stars. Mounted on ESO's 3.6-meter instrument at La Silla Observatory in Chile, HARPS (High Accuracy Radial Velocity Planet Searcher) has produced more than 100 exoplanet...

read more

Spacetime Beyond the Planck Scale

Is the universe at the deepest level grainy? In other words, if you keep drilling down to smaller and smaller scales, do you reach a point where spacetime is, like the grains of sand on a beach, found in discrete units? It's an interesting thought in light of recent observations by ESA's Integral gamma-ray observatory, but before we get to Integral, I want to ponder the spacetime notion a bit further, using Brian Greene's superb new book The Hidden Reality as my guide. Because how spacetime is put together has obvious implications for our philosophy of science. Consider how we measure things, and the fact that we have to break phenomena into discrete units to make sense of them. Here's Greene's explanation: For the laws of physics to be computable, or even limit computable, the traditional reliance on real numbers would have to be abandoned. This would apply not just to space and time, usually described using coordinates whose values can range over the real numbers, but also for all...

read more

Wild 2: Liquid Water Inside a Comet?

What goes on inside Kuiper Belt objects in the outer reaches of the Solar System? We can get some idea from what we're learning about comets like Wild-2, dust grains of which were brought back to Earth in 2006 as part of the Stardust mission. The thinking about Wild-2 is that, like many comets, it originated in the Kuiper Belt out of icy debris left over from the formation of the Solar System. But its orbit was eventually disrupted by Jupiter's gravitational influence on a pass through the inner system, sending the comet into a new, highly elliptical orbit. Image: Comet Wild 2, which NASA's Stardust spacecraft flew by on Jan. 2, 2004. The picture on the left is the closest short exposure of the comet. The listed names on the right are those used by the Stardust team to identify features. "Basin" does not imply an impact origin. Credit: NASA/Stardust mission. Now analysis of Wild-2's dust grains is changing our view of cometary interiors. A new study by Eve Berger and Dante Lauretta...

read more

Interstellar Flight: The Case for a Probe

Back in May I looked at Jean Schneider's thoughts on what we might do if we discovered a planet in the habitable zone of a nearby star. In an article for Astrobiology called "The Far Future of Exoplanet Direct Characterization," Schneider (Paris Observatory) reviewed technologies for getting a direct image of an Earth-like planet and went on to discuss how hard it would be to get actual instrumentation into another solar system. His thoughts resonate given recent findings about Gliese 581g (although the latest data from the HARPS spectrograph evidently show no sign of the planet, a startling development as we investigate this intriguing system). Whether or not Gl 581g exists and is where we think it is, Schneider's pessimism about getting an actual payload into another solar system has attracted the attention of Ian Crawford (University of London), who is quick to point out that astronomical remote-sensing, especially for biological follow-up studies of initial biomarker detections,...

read more

A Quick Take on IAC’s Final Day

by Kelvin Long No one gets more done on a Blackberry than Kelvin Long, one of the powerhouses behind Project Icarus. Kelvin has been in Prague for the International Astronautical Congress, and just sent along a wrap-up of his final day at the conference, one he completed while on the way to the airport. Here's a quick and mobile take on the last day of IAC 2010 as seen by this physicist and author. I'm sitting listening to one of my last talks before I catch my flight. It's on the JEO or Jupiter Europa Orbiter mission [part of the proposed Europa Jupiter System Mission (EJSM)]. The spacecraft will have around twelve instruments on board with the focus on the emergence of habitable worlds. It will be accompanied by the JGO spacecraft or Jupiter Ganymede Orbiter. It's going to be a great mission and pity Arthur C. Clarke isn't around to see it. Launch date 2020 and ends around 2029. Apparently the radiation design dose will be 2.9 Mega rads. An Io gravity assist will be used for...

read more

HR 8799b: Low Temperatures, Surprising Spectrum

Photos of the Earth from a significant distance are always fascinating, dating back to the spectacular shot of the rising Earth over lunar mountains taken by Apollo 8 in December of 1968. The image below, showing Earth and its Moon, comes from the Messenger spacecraft, taken at a distance of some 183 million kilometers. I see things like this and think about our future imaging of exoplanets, and the possibilities of space-based missions that can study their atmospheres. Learning how we look helps us understand what to look for around other stars, and also offers a bit of the 'wow' factor. We're nowhere near this kind of imaging with exoplanets but we're getting better all the time, and that's providing some curious results. HR 8799 is the interesting young system some 130 light years from Earth (in Pegasus) that has yielded direct images of three planets. Some eighteen months after the discovery of the system here, we've now managed to get a spectrum of HR 8799b, useful for what it...

read more

The Perseid Project: Crowd-sourcing the Meteor Stream

An individual meteorite can tell us much about the composition of ancient Solar System material, but today I want to mention a project that is taking the aggregate view. Chris Crawford has set up the Perseid Laptop Meteor Observation Project as a way to use 'crowd-sourcing' to build up a three-dimensional map of the Perseid meteor stream. Here's what Chris said about it in a recent email: This will be one of the better years for Perseids; the Moon, which often interferes with the Perseids, will not be a problem this year. So I'm putting together something that's never been done before: a spatial analysis of the Perseid meteor stream. We've had plenty of temporal analyses, but nobody has ever been able to get data over a wide area -- because observations have always been localized to single observers. But what if we had hundreds or thousands of people all over North America and Europe observing Perseids and somebody collected and collated all their observations? This is crowd-sourcing...

read more

TrES-2b: Pushing Exomoon Limits

The planet known as TrES-2b is an interesting and useful place. Just over Jupiter mass, it orbits a solar mass star some 717 light years from Earth, a 'hot Jupiter' in a tight 2.47-day orbit. It's also a transiting planet, discovered by the Trans-Atlantic Exoplanet Survey, which uses small, automated equipment and off-the-shelf technology to get the job done, feeding planet candidates to larger installations like the Keck Observatory and Palomar Observatory. But TrES-2b has a new and important distinction: It's in the field of view of the space-based Kepler telescope. Now we're really in business. Exomoon-hunter David Kipping (University of London) said in a recent email that when this planet is viewed in 'short-cadence mode' with Kepler, it's like seeing transits in High Definition. And indeed, that seems to be the case, as you can see in the diagram below. Kepler offers two measurement cadences: 1 minute cadence for up to 512 targets and a 30 minute cadence for up to 170,000 stars....

read more

Costs of an Interstellar Probe

When does it make sense to build a starship? Back in the late 1960s, Freeman Dyson went to work on the question of how much an interstellar probe might cost. Extrapolating from nuclear pulse propulsion and the state of the art in spacecraft design as then understood, Dyson arrived at an estimate of $100 billion to build the craft, which translates into roughly $650 billion today. Though stark, that figure is by no means as eye-popping as one of the estimates drawn up by the original Project Daedalus team: $100 trillion in 1978 dollars. These figures numb the senses, and you may recall the recent work by Ralph McNutt (Johns Hopkins Applied Physics Laboratory) and team, which pegged the cost of a series of human expeditions into the outer Solar System at $4 trillion. It's helpful to remember, though, that calculating when a project becomes fiscally feasible can be a useful undertaking in itself. Richard Obousy goes to work on these matters in a recent post in the Project Icarus blog,...

read more

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives