Centauri Dreams

Imagining and Planning Interstellar Exploration

The Prevalence of ‘Jupiters’ around Larger Stars

Work on the Centauri Dreams internals continues, with the unwelcome result that the site has been popped offline twice because of a possible security problem. Needless to say, this has to be resolved before I can move forward on other aspects of the rebuild. While I deal with that issue, let me respond to a few backchannel questions about yesterday’s post on gas giants in red dwarf planetary systems. What I’m being asked about is my comment that gas giants like Jupiter, at similar distances and installation, around other classes of stars are common compared to what we see at red dwarfs.

This has been a problematic issue, and the matter is a long way from achieving a consensus among researchers. A moment’s reflection yields the reason: Finding gas giants in outer system orbits around a star like the Sun is no easy matter. Radial velocity is most sensitive when dealing with large planets in tight orbits, which is why the first detections in main sequence stellar systems, beginning back in 1995 with 51 Pegasi b, were of the ‘hot Jupiter’ variety. That in itself offered new insights into planetary formation and dynamics. As physicist Isidor Isaac Rabi cogently asked when the muon was first detected, “Who ordered that?”

We’re making all kinds of advances in radial velocity as we use ever more sophisticated instruments to measure the motion induced by orbiting bodies around distant stars, but if we back out to, say, 5 AU, Jupiter’s distance from the Sun, we’re still dealing with extremely tiny effects. Transits are problematic because a planet on a five-year orbit obviously transits its host on long timeframes. Gravitational microlensing is an interesting prospect, because here we can detect planets at the needed distances, but even so the catalog isn’t large and there is much we don’t know.

Fortunately, resources like the California Legacy Survey (719 stars over three decades) are available and have produced data on what we can call ‘cold giants.’ I made my comment because of a paper in the Astrophysical Journal Supplement Series that I learned about through the Pass et al. paper we looked at in the previous post. This is from Caltech’s Lee Rosenthal and colleagues, and it examines the combination of small rocky planets with outer gas giants using the CLS for the bulk of its data. The result is a look at the occurrence of close-in planets with outer giant companions.

The Rosenthal paper addresses radial velocity work on F-, G-, K- and M-class stars and targets both categories of planets, finding that roughly 41 percent of systems with a close-in small planet also host an outer giant. By close-in small planet, the authors mean planets orbiting from 0.023–1 AU with a mass twice to 30 times that of Earth. And the giant planets examined are from 0.23–10 AU and 30 to 6000 Earth masses.

The implication is that stars hosting small inner planets are more likely to have an outer gas giant, for the number is roughly 17 percent for stars irrespective of small planet presence. There is much to be done with data from the California Legacy Survey (the baseline of RV observations goes back to 1988, and is invaluable), but studies like these lead to the conclusion that planets in Jupiter-like orbits are not uncommon among F-, G- and K-class stars. As to the M-dwarfs, the Pass paper indicates the scarcity of gas giants around them, with all that may imply about inner planet habitability. Note that the CLS is made up mostly of FGK stars, with 98% of stars in the sample having stellar masses above 0.3 solar masses..

I haven’t had time to dig into a previous paper using the California Legacy Survey data, this one from Benjamin Fulton (Caltech) with Rosenthal as a co-author, but do note that the authors find that the occurrence of planets less massive than Jupiter (from 30 Earth masses up to 300 as per RV data) is enhanced near 1–10 AU “in concordance with their more massive counterparts.” The complete citation is below.

We still have much to learn about exoplanet system architectures, but we’re making progress as the inflowing current of high-quality data grows ever more powerful.

The paper is Rosenthal et al., “The California Legacy Survey. III. On the Shoulders of (Some) Giants: The Relationship between Inner Small Planets and Outer Massive Planets,” Astrophysical Journal Supplement Series, Vol. 262, No. 1 (17 August 2022), 262 1 (abstract). The Fulton paper is “California Legacy Survey. II. Occurrence of Giant Planets beyond the Ice Line,” Astrophysical Journal Supplement Series Vol. 255, No. 1 (9 July 2021), 255, 13 (abstract).

A Scarcity of ‘Jupiters’ in Red Dwarf Systems

Gas giant worlds like Jupiter may be uncommon around red dwarf stars, as a number of recent studies have found. It would be useful to tighten up the data, however, because many of the papers on this matter have used stellar samples at the high end of the mass range of M-dwarfs. At the Center for Astrophysics | Harvard & Smithsonian (CfA), Emily Pass and colleagues have gone to work on the question by looking at lower-mass M-dwarfs and working with a lot of them, some 200 in their sample, all within 15 parsecs.

The question is not purely academic, for some scientists suggest that the presence of a Jupiter-class planet – not uncommon around G-class stars like the Sun – is a factor in the development of life. Migrating inward from a formation in the first few hundred million years of the Solar System’s existence, Jupiter would have stirred up plenty of icy cometary bodies through gravitational interactions. Impacts from this infall into the inner system likely delivered a great deal of water and organic molecules to the young Earth, thus becoming a factor in the development of life.

Thus a system like TRAPPIST-1, with its seven rocky planets orbiting a nearby red dwarf, raises the question of whether such a system would have gone through this kind of mixing. No one knows whether life would have begun on Earth without these effects, but the suggestion that systems without a gas giant are barren is plausible. So just how common are red dwarf systems with gas giants equivalent to Jupiter based on what we know so far? It’s telling that only two of the known gas giants orbiting a red dwarf occur around stars of less than 30 percent of the Sun’s mass: LHS 252 b and GJ 83.1 b.

Image: A gas giant around an M-class dwarf, as visualized by artist Melissa Weiss, CfA.

What Pass and team deliver is a statistical analysis, using spectroscopic surveys and radial velocity data on nearby M-dwarfs in the mass range of 0.10–0.30 stellar masses. The data are presented in a paper now in process at The Astronomical Journal. The results confirm the belief that red dwarfs are seldom the hosts for Jupiter-class worlds. In fact, in the entire sample, not a single Jupiter-equivalent planet occurred, allowing the authors to conclude that Jupiter analogues must be found in fewer than 2 percent of low-mass red dwarf systems:

Planets that are Jupiter-like in mass and instellation are rare around low-mass M dwarfs, consistent with expectations from core accretion theory. Compared with previous radial-velocity and microlensing studies that consider broader distributions of M-dwarfs with higher mean stellar masses, our results are consistent with a decrease in giant planet occurrence with decreasing M-dwarf mass…

The authors note the complications of comparing occurrence rate between the various surveys that have so far attempted it, but add:

…the picture of giant planet occurrence from microlensing is still unclear. If Poleski et al. (2021) are correct in their assertion that every microlensing star has a wide-orbit giant planet, our results imply that the distribution of giant planets around low-mass M dwarfs must differ dramatically from more massive stars, whose giant planets are more prevalent near the water snow line than on wide orbits.

These are interesting findings especially in terms of habitability. Rather than assuming that red dwarf planets are unlikely to have life, they could just as easily point to the differences between these systems and our own as offering other avenues for life to develop. CfA’s David Charbonneau makes the point explicitly: “We don’t think that the absence of Jupiters necessarily means rocky planets around red dwarfs are uninhabitable.”

What we do have are planetary systems different enough from ours to encourage speculation on what factors might produce life in different ways than our own system. Consider that the lack of gas giants also indicates more raw material for planetary formation on the scale of smaller rocky worlds. Given the proximity of red dwarf stars with rocky planets, they’ll be at the forefront of astrobiological investigation as we develop the ability to study their atmospheres. The possibilities remain open, and perhaps exotic, as we continue the hunt for life elsewhere. Adds Pass:

“We have shown that the least massive stars don’t have Jupiters, meaning Jupiter-mass planets that receive similar amounts of starlight as Jupiter receives from our Sun. While this discovery suggests truly Earth-like planets might be in short supply around red dwarfs, there still is so much we don’t yet know about these systems, so we must keep our minds open.”

The paper is Pass et al., “Mid-to-Late M Dwarfs Lack Jupiter Analogs,” in process at The Astronomical Journal (preprint).

 

Catching Up

Centauri Dreams began as a website back in August of 2004. I’m startled to realize, looking through the stats that my site’s software provides, that in the subsequent nineteen years, there have been 4,659 posts, along with close to 100,000 comments. The irony is that I started the site simply as a research venue for myself, thinking to keep up with the latest news by building a collection of articles and scientific papers. It took about a year before I even switched on the comments function.

One of the benefits of publishing for such a length of time is perspective, as the interstellar research scene has grown and changed over the past two decades. But one thing I didn’t do is keep up with the software. Always focused on content, I’ve kept writing but have let too many generations of internal programming stay mired in older iterations. The dangers of this are obvious. A site with obsolete internals is all too open to hacking. And now, completely normal upgrades to some of the site’s functionality threaten to break some of the older software. Something has to be done.

What’s now happening is a thorough re-doing of the internals of Centauri Dreams, one that will solve the immediate problems and allow upgrades to some of the external programs I use. The most obvious change to readers will be the site theme, although things should remain pretty familiar. I want Centauri Dreams to continue with its basic layout, and that means no advertising, no pop-up windows, no annoyances to distract from the text. Behind the scenes, the site will be rendered more secure and also more efficient, with less chance of an errant move on my part bringing things down.

Please bear with me as the work proceeds. The new look comes with significantly tightened security. Work behind the scenes will continue on a number of issues I want to resolve. I’ll tweak the look and feel around the edges, but let’s get through the transition first. This should be done within the next day or two. If any late-arriving comments get lost along the way, I’ll get those restored as soon as I can. Anticipating problems – and they always turn up, no matter what – should help to deflect them.

SETI: Asking the Right Questions

Did Carl Sagan play a role in the famous Arecibo message transmitted toward the Hercules Cluster in 1974? I’ve always assumed so, given Sagan’s connection with Frank Drake, who was then at Cornell University, where Sagan spent most of his career. But opinion seems to vary. Artist/scientist Joe Davis, who now has affiliations with both MIT’s Laboratory of Molecular Structure and Harvard Medical School, noted in an email this morning that Sagan’s widow, Ann Druyan, supports the connection, but according to Davis, Drake himself denied Sagan’s role in the composition or transmission of the message.

I mention all this because of Tuesday’s post on the simulated SETI signal being sent via ESO’s Mars ExoMars Trace Gas Orbiter, as a kind of work of art in its own right as well as a test case in building public involvement in the decoding of an unusual message. The idea of doing that irresistibly recalled Joe Davis because in 1988 Davis performed his own act of scientific art involving SETI, one that involved the Arecibo message and raised the question of whether any recipients would recognize it, much less decode it.

Image: A color-coded version of the Arecibo message highlighting its separate parts. The binary transmission itself carried no color information. Credit: Arne Nordmann / Wikimedia Commons. CC BY-SA 3.0.

The project, called “A Message in Many Bottles,” was set up at MIT’s Hayden Library in 1988. Davis used 1679 ‘Boston round’ 16 ounce glass bottles arrayed in a set of partitioned racks that were displayed in stacks. This is remarkably clever stuff: Each of 18 aisles in the library contained racks of bottles mounted, as Davis told me, 23 across. Empty bottles served as 0s in this digital message, while bottles filled with water represented the 1s. The whole thing reproduced the 1974 Arecibo message.

Now remember, this is MIT. You would think that if there is any place where a population of scientists, academics and students might puzzle out an enigmatic artifact like this, it would be here. Davis puts it this way in his email:

Hayden Library is MIT’s science library and contains all of the information needed to decode the message, all information the message refers to, and supposedly, better-than-average terrestrial intelligence. To the best of my knowledge, nobody decoded it. Instead, there were arguments…about whether or not the racks of bottles constituted works of art.

Image: An evidently baffled student contemplates the “Message in Many Bottles.” Credit: Joe Davis.

In 1997, a year after Sagan’s death, Davis reinstalled the display at MIT’s then new biology facility (Building 68), dedicating the work to the memory of Sagan. A short article on the matter in Nature (27 March 1997) noted the project as an homage to Sagan that accurately reproduced the Arecibo signal, going on to note:

Philip Sharp, chairman of MIT’s biology department, describes the exhibit as a “fitting tribute” to Sagan’s work. “It brings the abstraction of a radar message into an accessible, physical form,” says Sharp. He says he sees “numerous benefits” in having an artist who approaches issues from an unorthodox perspective working alongside more formally trained scientists.

Labeled as a tribute to Sagan and explained so that viewers could decode the message, “A Message in Many Bottles” served as an effective exhibit inhabiting the muzzy borderland where science meets art and creative minds translate research into shapes and forms that interrogate the meaning of our experiments. For that matter, was the Arecibo message itself not a kind of art, given that with a target 25,000 light years away, there was no conceivable way to see it as an actual communication?

Back in 2009 Joe Davis wrote “RuBisCo Stars” and the Riddle of Life for Centauri Dreams, presenting his own work at Arecibo, which wound up, on the 35th anniversary of the Arecibo message, in a new message based on molecular biology that was sent to three nearby stars. How he did this using, remarkably, an analog audio file on his iPhone interfacing with Arecibo’s technology is explained in the second part of his 2009 post, “RuBisCo Stars”: Part II. These two posts are, as everything involving Joe Davis’ work continues to be, invigorating and startlingly thought-provoking.

Image: At Arecibo, Joe Davis ponders transmission options as he holds the possible answer. Credit: Ashley Clark.

In fact, Davis notes in part II, in the midst of explaining to Arecibo’s then interim director Michael Nolan what his project is about, that “projects concerned with the search for extraterrestrial intelligence are really more about a search for ourselves; that they make us look much more intensely at ourselves than we look away into space and that nobody seems to see that part of it.” Nor could the myriad well-trained minds who encountered the Arecibo message in “A Message in Many Bottles” decode its meaning.

Science is so often about asking the right question. What are we staring at right now that we are not seeing? Are we asking the right questions about SETI?

tzf_img_post

Links for IRG Interstellar Symposium in Montreal

The preliminary program for the Interstellar Research Group’s 8th Interstellar Symposium in Montreal is now available. For those of you heading to the event, I want to add that the early bird registration period for attending at a discount is May 31. Registration fees go up after that date. Registering at the conference hotel can be handled here. Registration before the 31st is recommended to get a room within the block reserved for IRG.

tzf_img_post

First Contact: A Global Simulation

Now and again scientists think of interesting ways to use our space missions in contexts for which they were not designed. I’m thinking, for example, of the ‘pale blue dot’ image snapped by Voyager 1 in 1990, an iconic view that forcibly speaks to the immensity of the universe and the smallness of the place we inhabit. Voyager’s cameras, we might recall, were added only after a debate among mission designers, some of whom argued that the mission could proceed without any cameras aboard.

Fortunately, the camera advocates won, with results we’re all familiar with. Now we have a project out of The SETI Institute that would use a European Space Agency mission in a novel way, one that also challenges our thinking about our place in the cosmos. Daniela de Paulis, who serves as artist in residence at the institute, is working across numerous disciplines with researchers involved in SETI and astronautics to create A Sign in Space, the creation of an ‘extraterrestrial’ message. This is not a message beamed to another star, but a message beamed back at us.

The plan is this: On May 24, 2023, tomorrow as I write this on the US east coast, ESA’s ExoMars Trace Gas Orbiter, in orbit around Mars, will transmit an encoded message to Earth that will act as a simulation of a message from another civilization. The message will be detected by the Allen Telescope Array (ATA) in California, the Green Bank Telescope (GBT) in West Virginia and the Medicina Radio Astronomical Observatory in Italy. The content of the message is known only to de Paulis and her team, and the public will be in on the attempt to decode and interpret it. The message will be sent at 1900 UTC on May 24 and discussed in a live stream event beginning at 1815 UTC online.

The signal should reach Earth some 16 minutes after transmission, hence the timing of the live stream event. This should be an enjoyable online gathering. According to The SETI Institute, the live stream, hosted by Franck Marchis and the Green Bank Observatory’s Victoria Catlett, will feature key team members – scientists, engineers, artists and more – and will include control rooms from the ATA, the GBT, and Medicina.

Daniela de Paulis points to the purpose of the project:

“Throughout history, humanity has searched for meaning in powerful and transformative phenomena. Receiving a message from an extraterrestrial civilization would be a profoundly transformational experience for all humankind. A Sign in Space offers the unprecedented opportunity to tangibly rehearse and prepare for this scenario through global collaboration, fostering an open-ended search for meaning across all cultures and disciplines.”

The data are to be stored in collaboration with Breakthrough Listen’s Open Data Archive and the storage network Filecoin, the idea being to make the signal available to anyone who wants to have a crack at decoding it. A Sign in Space offers a Discord server for discussion of the project, while findings may be submitted through a dedicated form on the project’s website. For a number of weeks after the signal transmission, the A Sign in Space team will host Zoom discussions on the issues involved in reception of an extraterrestrial signal, with the events listed here.

tzf_img_post

Charter

In Centauri Dreams, Paul Gilster looks at peer-reviewed research on deep space exploration, with an eye toward interstellar possibilities. For many years this site coordinated its efforts with the Tau Zero Foundation. It now serves as an independent forum for deep space news and ideas. In the logo above, the leftmost star is Alpha Centauri, a triple system closer than any other star, and a primary target for early interstellar probes. To its right is Beta Centauri (not a part of the Alpha Centauri system), with Beta, Gamma, Delta and Epsilon Crucis, stars in the Southern Cross, visible at the far right (image courtesy of Marco Lorenzi).

Now Reading

Recent Posts

On Comments

If you'd like to submit a comment for possible publication on Centauri Dreams, I will be glad to consider it. The primary criterion is that comments contribute meaningfully to the debate. Among other criteria for selection: Comments must be on topic, directly related to the post in question, must use appropriate language, and must not be abusive to others. Civility counts. In addition, a valid email address is required for a comment to be considered. Centauri Dreams is emphatically not a soapbox for political or religious views submitted by individuals or organizations. A long form of the policy can be viewed on the Administrative page. The short form is this: If your comment is not on topic and respectful to others, I'm probably not going to run it.

Follow with RSS or E-Mail

RSS
Follow by Email

Follow by E-Mail

Get new posts by email:

Advanced Propulsion Research

Beginning and End

Archives